SEPALLATA3 of Arabidopsis thaliana is a MADS-domain transcription factor (TF) and a key regulator of flower development. MADS-domain proteins bind to sequences termed 'CArG-boxes' [consensus 5'-CC(A/T) GG-3']. Because only a fraction of the CArG-boxes in the Arabidopsis genome are bound by SEPALLATA3, more elaborate principles have to be discovered to better understand which features turn CArG-boxes into genuine recognition sites. Here, we investigate to what extent the shape of the DNA is involved in a 'shape readout' that contributes to the binding of SEPALLATA3. We determined in vitro binding affinities of SEPALLATA3 to DNA probes that all contain the CArG-box motif, but differ in their predicted DNA shape. We found that binding affinity correlates well with a narrow minor groove of the DNA. Substitution of canonical bases with non-standard bases supports the hypothesis of minor groove shape readout by SEPALLATA3. Analysis of mutant SEPALLATA3 proteins further revealed that a highly conserved arginine residue, which is expected to contact the DNA minor groove, contributes significantly to the shape readout. Our studies show that the specific recognition of cis-regulatory elements by a plant MADS-domain TF, and by inference probably also of other TFs of this type, heavily depends on shape readout mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.13954DOI Listing

Publication Analysis

Top Keywords

shape readout
16
minor groove
12
conserved arginine
8
arginine residue
8
sepallata3
7
dna
6
shape
6
floral homeotic
4
homeotic protein
4
protein sepallata3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!