Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against myocardial ischemia/reperfusion (I/R) injury. However, whether the cardioprotection of VNS is mainly due to direct activation through its ipsilateral efferent fibers (motor) rather than indirect effects mediated by the afferent fibers (sensory) have not been clearly understood. We hypothesized that VNS exerts cardioprotection predominantly through its efferent vagal fibers. Thirty swine (30-35 kg) were randomized into five groups: I/R no VNS (I/R), and left mid-cervical VNS with both vagal trunks intact (LC-VNS), with left vagus nerve transection (LtVNX), with right vagus nerve transection (RtVNX) and with atropine pretreatment (Atropine), respectively. VNS was applied at the onset of ischemia (60 min) and continued until the end of reperfusion (120 min). Cardiac function, infarct size, arrhythmia score, myocardial connexin43 expression, apoptotic markers, oxidative stress markers, inflammatory markers (TNF-α and IL-10) and cardiac mitochondrial function, dynamics and fatty acid oxidation (MFN2, OPA1, DRP1, PGC1α and CPT1) were determined. LC-VNS exerted cardioprotection against myocardial I/R injury via improvement of mitochondrial function and dynamics and shifted cardiac fatty acid metabolism toward beta oxidation. However, LC-VNS and LtVNX, both efferent vagal fibers are intact, produced more profound cardioprotection, particularly infarct size reduction, decreased arrhythmia score, oxidative stress and apoptosis and attenuated mitochondrial dysfunction compared to RtVNX. These beneficial effects of VNS were abolished by atropine. Our findings suggest that selective efferent VNS may potentially be effective in attenuating myocardial I/R injury. Moreover, VNS required the contralateral efferent vagal activities to fully provide its cardioprotection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00395-018-0683-0DOI Listing

Publication Analysis

Top Keywords

vagus nerve
16
efferent vagal
16
cardioprotection myocardial
12
vagal fibers
12
i/r injury
12
vns
9
nerve stimulation
8
exerts cardioprotection
8
myocardial ischemia/reperfusion
8
nerve transection
8

Similar Publications

The role of autonomic nervous system (ANS) modulation in chronic neck pain remains elusive. Transcutaneous vagus nerve stimulation (t-VNS) provides a novel, non-invasive means of potentially mitigating chronic neck pain. This study aimed to assess the effects of ANS modulation on heart rate variability (HRV), pain perception, and neck disability.

View Article and Find Full Text PDF

Method for measuring cervical vagal nerve activity in conscious rats.

Am J Physiol Endocrinol Metab

January 2025

Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan.

The current study aimed to propose a method to directly measure right cervical vagal nerve activity (cVNA) alongside renal sympathetic nerve activity (RSNA) in conscious rats. The right cervical vagus nerve was surgically exposed and fitted with a bipolar electrode to record cVNA. A microcatheter was used to administer levobupivacaine to selectively block afferent cVNA.

View Article and Find Full Text PDF

Background: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated.

View Article and Find Full Text PDF

Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner.

View Article and Find Full Text PDF

Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, cognitive impairment, and distinctive electroencephalographic patterns. Neuromodulation techniques, including vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS), have emerged as important treatment options for patients with LGS who do not respond adequately to antiseizure medications. This review, developed with input from the Pediatric Epilepsy Research Consortium (PERC) LGS Special Interest Group, provides practical guidance for clinicians on the use of these neuromodulation approaches in patients with LGS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!