A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anatomical organization of the cerebrum of the desert locust Schistocerca gregaria. | LitMetric

Anatomical organization of the cerebrum of the desert locust Schistocerca gregaria.

Cell Tissue Res

Animal Physiology, Faculty of Biology & Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg, 35032, Marburg, Germany.

Published: October 2018

The desert locust Schistocerca gregaria is a major agricultural pest in North Africa and the Middle East. As such, it has been intensely studied, in particular with respect to population dynamics, sensory processing, feeding behavior flight and locomotor control, migratory behavior, and its neuroendocrine system. Being a long-range migratory species, neural mechanisms underlying sky compass orientation have been studied in detail. To further understand neuronal interactions in the brain of the locust, a deeper understanding of brain organization in this insect has become essential. As a follow-up of a previous study illustrating the layout of the locust brain (Kurylas et al. in J Comp Neurol 484:206-223, 2008), we analyze the cerebrum, the central brain minus gnathal ganglia, of the desert locust in more detail and provide a digital three-dimensional atlas of 48 distinguishable brain compartments and 7 major fiber tracts and commissures as a basis for future functional studies. Neuropils were three-dimensionally reconstructed from synapsin-immunostained whole mount brains. Neuropil composition and their internal organization were analyzed and compared to the neuropils of the fruit fly Drosophila melanogaster. Most brain areas have counterparts in Drosophila. Some neuropils recognized in the locust, however, have not been identified in the fly while certain areas in the fly could not be distinguished in the locust. This study paves the way for more detailed anatomical descriptions of neuronal connections and neuronal cell types in the locust brain, facilitates interspecies comparisons among insect brains and points out possible evolutionary differences in brain organization between hemi- and holometabolous insects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-018-2844-8DOI Listing

Publication Analysis

Top Keywords

desert locust
12
locust
8
locust schistocerca
8
schistocerca gregaria
8
brain
8
brain organization
8
locust brain
8
anatomical organization
4
organization cerebrum
4
cerebrum desert
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!