The glassiness of polymer melts is generally considered to be suppressed by small dimensions, added solvent, and heat. Here, we suggest that glassiness persists at the nanoscale in worm-like micelles composed of amphiphilic diblock copolymers of poly(ethylene oxide)-polystyrene (PS). The glassiness of these worms is indicated by a lack of fluorescence recovery after photobleaching as well as micron-length rigid segments separated by hinges. The coarse-grained molecular dynamics studies probe the dynamics of the PS in these glassy worms. Addition of an organic solvent promotes a transition from hinged to fully flexible worms and to spheres or vesicles. Simulation demonstrates two populations of organic solvent in the core of the micelle-a solvent 'pool' in the micelle core and a second population that accumulates at the interface between the core and the corona. The stable heterogeneity of the residual solvent could explain the unusual hinged rigidity, but solvent removal during shear-extension could be more effective and yield - as observed - nearly straight worms without hinges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174325 | PMC |
http://dx.doi.org/10.1039/c8sm00080h | DOI Listing |
Small
December 2024
Department of Chemistry, Xihua University, Chengdu, 610039, China.
Nano-formulated pesticides are increasingly desired to control the insect pest and plant disease with superior efficacy for guaranteeing the high yield and quality in crop production. However, the impact of nanocarrier morphology on pesticide resistance against rainwash, photolysis, and overall pesticide bioactivity remains unknown. In this work, a series of well-defined and morphology-controllable polymer nanocarriers for pesticide are fabricated through polymerization-induced self-assembly.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan.
The aggregation properties of sugar-based surfactants with methyl groups at multiple positions on the linear alkyl chain are an understudied topic. Therefore, in this study, we performed a structural analysis of aggregates formed by two types of sugar-based nonionic surfactants with multibranched methyl chains, 3,7,11-trimethyldodecyl maltoside (CMal), as well as with a linear chain, dodecyl--d-maltoside (CMal), in aqueous solutions using rheological and small-angle X-ray scattering techniques. CMal showed an excellent performance in lowering surface tension (28.
View Article and Find Full Text PDFAppl Phys Lett
October 2024
Department of Physics, University of Fribourg, Fribourg CH-1700, Switzerland.
We study the high-frequency, micro-mechanical response of suspensions composed of cardiac and skeletal muscle myosin by optical trapping interferometry. We observe that in low ionic strength solutions, upon the addition of magnesium adenosine triphosphate (MgATP), myosin suspensions radically change their micro-mechanics properties, generating a viscoelastic fluid characterized by a complex modulus similar to a suspension of worm-like micelles. This transduction of energy, from chemical to mechanical, may be related to the relaxed states of myosin, which regulate muscle contractility and can be involved in the etiology of many myopathies.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA. Electronic address:
Protein-surfactant interactions have been an ongoing topic of interest for many decades. Applications involving complexes of proteins and surfactants are relevant in food, pharmaceuticals, hygiene, molecular characterization, and other fields. In this study, the interactions of polymerized whey proteins (PWP) and sodium dodecyl sulfate (SDS) at high concentrations are investigated.
View Article and Find Full Text PDFBiophys J
November 2024
Institute for Theoretical Physics, Georg-August University, Göttingen, Germany. Electronic address:
The division of a cellular compartment culminates with the scission of a highly constricted membrane neck. Scission requires lipid rearrangements, topology changes, and transient formation of nonbilayer intermediate structures driven by curvature stress. Often, a side effect of this stress is pore-formation, which may lead to content leakage and thus breaching of the membrane barrier function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!