Context: Kv7 potassium channels are expressed in several types of smooth muscles and could mediate physiological responses in the tissues expressed. Flupirtine is an analgesic that acts by opening Kv7 potassium channels. It has been shown to inhibit the contractility of several types of isolated smooth muscle.
Aims: This study investigated the ability of flupirtine to inhibit the spontaneous contractility of isolated distal caprine (goat) ureter.
Settings And Design: Spontaneous contractility of the isolated goat ureter was recorded using a physiograph.
Materials And Methods: The ability of 1, 3, 10, 30, and 90 μM concentrations of flupirtine maleate to inhibit the spontaneous contractility of isolated distal goat ureter was investigated. The ability of the nonspecific potassium channel blocker 4-aminopyridine (4-AP; 1 mM) and the specific Kv7 channel blocker XE-991 (100 μM) to reverse the inhibitory effect of flupirtine on ureteric contractility was also investigated.
Statistical Analysis Used: Both parametric and nonparametric statistical tests were used.
Results: At 10, 30, and 90 μM concentrations, flupirtine significantly inhibited the spontaneous contractility of the isolated goat ureter. The EC of flupirtine for a contact period of 10 min was 17.7 μM. The inhibitory effect of flupirtine on ureteric contractility was significantly reversed by 4-AP and XE-991.
Conclusions: Flupirtine inhibits the spontaneous contractility of the isolated goat ureter by opening Kv7 channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932919 | PMC |
http://dx.doi.org/10.4103/ijabmr.IJABMR_159_17 | DOI Listing |
Alzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: Impaired interstitial fluid drainage in the brain is indicated by the presence of perivascular β-amyloid (Aβ) deposits and is attributed to alterations in contractility and relaxation of vascular smooth muscle cells (SMCs). The brain microvasculature in Alzheimer disease (AD) accumulates amyloid-forming amylin secreted from the pancreas. Here, we tested the hypothesis that cerebrovascular amylin deposits perturbs cerebral Aβ efflux by impairing cerebral vasodilation.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Anesthesiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South of Renmin Road, Chengdu, 610041, Sichuan, China.
Background: Preterm birth, a leading cause of perinatal mortality and morbidity, is often associated with inflammation and aberrant myometrial contractions. This study investigates the role of Piezo1, a mechanosensitive ion channel, in myometrium contraction and inflammation-associated preterm birth.
Methods: We employed Western blotting, Immunofluorescence, and Quantitative real-time PCR techniques to examine Piezo1 expression in uterine tissues.
Biol Pharm Bull
December 2024
Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University.
The effect of a citrus-derived flavonoid, hesperetin, on the automaticity and contraction of isolated guinea pig myocardium was examined. Hesperetin inhibited the rate of ectopic action potential firing of the pulmonary vein myocardium; the slope of the diastolic depolarization was decreased with minimum change in the action potential waveform. The effect was dependent on the concentration; the EC value for firing rate was 56.
View Article and Find Full Text PDFSci Adv
December 2024
Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
The orientation and function of smooth muscle in the cervix may contribute to the important biomechanical properties that change during pregnancy. Thus, this study examined the three-dimensional structure, smooth muscle phenotype, and mechanical and contractile functions of the upper and lower cervix of nongravid (not pregnant) and gravid (pregnant) mice. In gravid cervix, we uncovered region-specific changes in the structure and organization of fiber tracts.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland and Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland.
From cytoskeletal networks to tissues, many biological systems behave as active materials. Their composition and stress generation is affected by chemical reaction networks. In such systems, the coupling between mechanics and chemistry enables self-organization, for example, into waves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!