A small-scale flow-through limestone column was used to evaluate the effect of common coexisting organic and inorganic compounds on the electrochemical dechlorination of trichloroethylene (TCE) in karst media. Iron anode was used to produce ferrous ions and promote reducing conditions in the column. The reduction of TCE under 90 mA current, 1 mL min flow rate, and 1 mg L initial TCE concentration, was inhibited in the presence of humic acids due to competition for direct electron transfer and/or reaction with atomic hydrogen produced at the cathode surface by water electrolysis. Similarly, presence of 10 mg L chromate decreased TCE reduction rate to 53%. The hexavalent chromium was completely reduced to trivalent chromium due to the ferrous species produced from iron anode. Presence of 5 mg L selenate decreased the removal of TCE by 10%. Chromium and selenate complexation with dissolved iron results in formation of aggregates, which cover the electrodes surface and reduce TCE dechlorination rate. Presence of 40 mg L nitrates caused reductive transformation of TCE up to 80%. Therefore, TCE removal is influenced by the presence of other contaminants that are present as a mixture in groundwater in the following order: humic acid, chromate, selenate, and nitrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937535PMC
http://dx.doi.org/10.1016/j.jece.2016.11.046DOI Listing

Publication Analysis

Top Keywords

electrochemical dechlorination
8
dechlorination trichloroethylene
8
karst media
8
tce
8
iron anode
8
presence
6
trichloroethylene presence
4
presence natural
4
natural organic
4
organic matter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!