This study quantified the strain development after inserting implant-borne fixed dental prosthesis (FDP) to various implant-abutment joints. Two bone-level implants (∅ = 4.1 mm, RC, SLA 10 mm, Ti, Straumann) were inserted in polyurethane models (N = 3) in the area of tooth nos 44 and 47. Four-unit veneered zirconium dioxide FDPs (n = 2) were fabricated, one of which was fixed on engaging (E; RC Variobase, ∅ = 4.5 mm, H = 3.5 mm) and the other on non-engaging (NE) abutments (RC Variobase, ∅ = 4.5 mm, H = 5.5 mm). One strain gauge was bonded to the occlusal surface of pontic no. 46 on the FDP and the other two on the polyurethane model. Before (baseline) and after torque (35 Ncm), strain values were recorded three times. Data were analyzed using Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Mean strain values presented significant increase after torque for both E and NE implant-abutment connection type (baseline: E = 4.33 ± 4.38; NE = 4.85 ± 4.85; torque: E = 196.56 ± 188.02; NE = 275.63 ± 407.7; p < .05). Mean strain values based on implant level presented significant increase after torque for both E and NE implant-abutment connection (baseline: E = 4.94 ± 5.29; NE = 5.78 ± 5.69; torque: E = 253.78 ± 178.14; NE = 347.72 ± 493.06; p < .05). The position of the strain gauge on implants (p = .895), FDP (p = .275), and abutment connection type (p = .873) did not significantly affect the strain values. Strain levels for zirconium dioxide implant-borne FDPs were not affected by the implant-abutment connection type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813893PMC
http://dx.doi.org/10.1002/cre2.97DOI Listing

Publication Analysis

Top Keywords

strain gauge
8
veneered zirconium
8
zirconium dioxide
8
implant-borne fixed
8
fixed dental
8
dental prosthesis
8
non-engaging abutments
8
variobase ∅ = 45 mm
8
strain values
8
strain
5

Similar Publications

Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe NEMS.

View Article and Find Full Text PDF

Objective:  To determine the effect of locking head inserts (LHI) on plate strain, stiffness, and deformation when applied to a 3.5-mm broad locking compression plate (LCP) in an open fracture-gap model.

Study Design:  Six, 13-hole, 3.

View Article and Find Full Text PDF

A Fully Printable Strain Sensor Enabling Highly-Sensitive Wireless Near-Field Interrogation.

Adv Sci (Weinh)

January 2025

Mechanical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Wireless, passive, and flexible strain sensors can transform structural health monitoring across various applications by eliminating the need for wired connections and active power sources. Such sensors offer the dual benefits of operational simplicity and high-function adaptability. Herein, a novel wireless sensor is fabricated using radio frequency (RF) technology for passive, wireless measurement of mechanical strains.

View Article and Find Full Text PDF

Anti-freezing conductive hydrogels with exceptional mechanical properties and stable sensing performance at -30 °C.

Mater Horiz

January 2025

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China.

Conductive hydrogels with stable sensing performance are highly required in soft electronic devices. However, these hydrogels tend to solidify and experience structural damage at sub-zero temperatures, leading to material breakdown and device malfunction. The main challenge lies in effectively designing the micro/nano-structure to enhance mechanical properties and stable strain sensing while preventing freezing in hydrogels.

View Article and Find Full Text PDF

Structural health monitoring (SHM) systems are critical in ensuring the safety of space exploration, as spacecraft and structures can experience detrimental stresses and strains. By deploying conventional strain gauges, SHM systems can promptly detect and assess localized strain behaviors in structures; however, these strain gauges are limited by low sensitivity (gauge factor, GF ∼ 2). This study introduces an approach to printing strain gauges with high sensitivity, while also considering stretchability and long-term durability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!