Corrosion in carbonated concrete is an example of corrosion in dense porous media of tremendous socio-economic and scientific relevance. The widespread research endeavors to develop novel, environmentally friendly cements raise questions regarding their ability to protect the embedded steel from corrosion. Here, we propose a fundamentally new approach to explain the scientific mechanism of corrosion kinetics in dense porous media. The main strength of our model lies in its simplicity and in combining the capillary condensation theory with electrochemistry. This reveals that capillary condensation in the pore structure defines the electrochemically active steel surface, whose variability upon changes in exposure relative humidity is accountable for the wide variability in measured corrosion rates. We performed experiments that quantify this effect and find good agreement with the theory. Our findings are essential to devise predictive models for the corrosion performance, needed to guarantee the safety and sustainability of traditional and future cements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943290PMC
http://dx.doi.org/10.1038/s41598-018-25794-xDOI Listing

Publication Analysis

Top Keywords

capillary condensation
12
dense porous
12
porous media
12
condensation theory
8
mechanism corrosion
8
corrosion dense
8
corrosion
7
electrochemistry capillary
4
theory reveal
4
reveal mechanism
4

Similar Publications

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

This study describes a microfluidic thread-based analytical device (μTAD) capable of in situ mass spectrometric analysis for continuous flow reaction monitoring. Organic reaction screening is foundational to drug discovery. Microfluidic devices are of special interest here because they provide continuous reaction monitoring with advantages such as the use of smaller reagent volumes and short analysis times.

View Article and Find Full Text PDF

Optimal CO intake in metastable water film in mesoporous materials.

Nat Commun

December 2024

Department of Civil and Environmental Engineering, and Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hong Kong, China.

The feasibility of carbon mineralization relies on the carbonation efficiency of CO-reactive minerals, which is largely governed by the water content and state within material mesopores. Yet, the pivotal role of confined water in regulating carbonation efficiency at the nanoscale is not well understood. Here, we show that the maximum CO intake occurs at an optimal relative humidity (RH) when capillary condensation initiates within the hydrophilic mesopores.

View Article and Find Full Text PDF

Cavitation, Hydrophilicity, and Sorption Hysteresis in C-S-H Pores: Coupled Effects of Relative Humidity and Temperature.

Langmuir

December 2024

Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS─Laboratoire de Mécanique Paris-Saclay, 91190 Gif-sur-Yvette, France.

Sorption processes are critical for the drying and durability of cement-based materials, directly affecting their thermal properties. Temperature can substantially influence these processes. This work uses molecular simulations to study sorption in C-S-H pores under varying temperatures and relative humidity, considering pore sizes from the gel to the interlayer scale (between 11.

View Article and Find Full Text PDF

Confined phase behavior of subcritical carbon dioxide in nanoporous media: the effects of pore size and temperature.

Phys Chem Chem Phys

January 2025

Center of Innovation for Flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.

This study investigates the effect of confinement on the phase behavior of carbon dioxide (CO) and its implications for storage in nanometer-scale pores. A patented gravimetric apparatus was employed to experimentally measure the adsorption and desorption isotherms at varying pore sizes and temperatures. The isotherms were generated at temperatures below the critical point of CO (from -23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!