Plants have developed different tropisms: in particular, they reorient the growth of their branches towards the light (phototropism) or upwards (gravitropism). How these tropisms affect the shape of a tree crown remains unanswered. We address this question by developing a propagating front model of tree growth. Being length-free, this model leads to self-similar solutions after a long period of time, which are independent of the initial conditions. Varying the intensities of each tropism, different self-similar shapes emerge, including singular ones. Interestingly, these shapes bear similarities to existing tree species. It is concluded that the core of specific crown shapes in trees relies on the balance between tropisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6000181 | PMC |
http://dx.doi.org/10.1098/rsif.2017.0976 | DOI Listing |
PLoS One
December 2024
School of Geoscience and Technology, Southwest Petroleum University, Chengdu, China.
Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.
View Article and Find Full Text PDFChaos
December 2024
Institute of Physics, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
We report remarkable pattern formation of quasiperiodic domains in the two-dimensional parameter space of an intrinsically coupled system, comprising a rotor and a Duffing oscillator. In our analysis, we characterize the system using Lyapunov exponents, identifying self-similar islands composed of intricate regions of chaotic, quasiperiodic, and periodic behaviors. These islands form structures with an accumulation arrangement, denominated here as metamorphic tongues.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1 OT Golm, 14476, Potsdam, Germany.
The skeletons of sharks and rays, fashioned from cartilage, and armored by a veneer of mineralized tiles (tesserae) present a mathematical challenge: How can the continuous covering be maintained as the skeleton expands? This study, using microCT and custom visual data analyses of growing stingray skeletons, systematically examines tessellation patterns and morphologies of the many thousand interacting tesserae covering the hyomandibula (a skeletal element critical to feeding), over a two-fold developmental change in hyomandibula length. The number of tesserae remains surprisingly constant, even as the hyomandibula expands isometrically, with all hyomandibulae displaying self-similar distributions of tesserae shapes/sizes. Although the distribution of tesserae geometries largely agrees with the rules for polyhedra tiling of complex surfaces-dominated by hexagons and a minor fraction of pentagons and heptagons, but very few other polygons-the agreement with Euler's classic mathematical laws is not perfect.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Department of Business Administration, University of Manitoba, Winnipeg, MB R3T 5V4, Canada.
Phys Rev E
June 2024
Departamento de Fisica, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain.
In this work, we performed experiments regarding the outflow of spheres and two different types of rice-shaped particles in a quasi-two-dimensional monolayer silo with a flat bottom. We investigate the velocity and solid fraction profiles at the orifice and test whether the profiles for nonspherical particles have similar self-similar properties as in the spherical case. We find that the magnitude and shape of the velocity profiles for all three particle types are in a similar range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!