Through phenotypic plasticity, bones can change in structure and morphology, in response to physiological and biomechanical influences over the course of individual life. Changes in bones also occur in evolution as functional adaptations to the environment. In this study, we report on the evolution of bone mass increase (BMI) that occurred in the postcranium and skull of extinct aquatic sloths. Although non-pathological BMI in postcranial skeleton has been known in aquatic mammals, we here document general BMI in the skull for the first time. We present evidence of thickening of the nasal turbinates, nasal septum and cribriform plate, further thickening of the frontals, and infilling of sinus spaces by compact bone in the late and more aquatic species of the extinct sloth Systemic bone mass increase occurred among the successively more aquatic species of , as an evolutionary adaptation to the lineage's changing environment. The newly documented pachyostotic turbinates appear to have conferred little or no functional advantage and are here hypothesized as a correlation with or consequence of the systemic BMI among species. This could, in turn, be consistent with a genetic accommodation of a physiological adjustment to a change of environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966604 | PMC |
http://dx.doi.org/10.1098/rspb.2018.0270 | DOI Listing |
PLoS One
January 2025
Facultad de Ciencias Naturales y Exactas, Departamento de Biología y Geografía, Universidad de Oriente, Santiago de Cuba, Cuba.
Climate change is a global environmental threat, directly affecting biodiversity. Terrestrial gastropods are particularly susceptible to alterations in temperature and humidity and have develop morph-physiological and behavioural adaptations in this regard. Shell colour polymorphism and its potential implication for thermoresistance constitute an unexplored field in Neotropical land snails.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, Syracuse University, Syracuse, New York, United States of America.
Although we have a good understanding of how phenotypic plasticity evolves in response to abiotic environments, we know comparatively less about responses to biotic interactions. We experimentally tested how competition and mutualism affected trait and plasticity evolution of pairwise communities of genetically modified brewer's yeast. We quantified evolutionary changes in growth rate, resource use efficiency (RUE), and their plasticity in strains evolving alone, with a competitor, and with a mutualist.
View Article and Find Full Text PDFMol Biol Evol
January 2025
School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent.
View Article and Find Full Text PDFPlant Divers
November 2024
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate.
View Article and Find Full Text PDFPlant Divers
November 2024
Department of Systematic and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland.
Phylogenetic niche conservatism posits that species tend to retain ancestral ecological traits and distributions, which has been broadly tested for lineages originating in tropical climates but has been rarely tested for lineages that originated and diversified in temperate climates. Liverworts are thought to originate in temperate climates. Mean lineage age reflects evolutionary history of biological communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!