Genetic analyses in a cohort of 191 pulmonary arterial hypertension patients.

Respir Res

State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Published: May 2018

Background: Pulmonary arterial hypertension (PAH) is a progressive and fatal disorder associated with high pulmonary artery pressure. Genetic testing enables early diagnosis and offers an opportunity for family screening. To identify genetic mutations and help make a precise diagnosis, we performed genetic testing in 191 probands with PAH and tried to analyze the genotype-phenotype correlation.

Methods: Initially, PAH samples (n = 119) were submitted to BMPR2 screening using Sanger sequencing. Later, we developed a PAH panel test to identify causal mutations in 13 genes related to PAH and tried to call BMPR2 copy number variations (CNVs) with the panel data. Multiplex ligation-dependent probe amplification (MLPA) was used to search for CNVs in BMPR2, ACVRL1 and ENG. Notably, EIF2AK4 gene was also involved in the panel, which allowed to distinguish pulmonary veno-occlusive disease (PVOD)/pulmonary capillary hemangiomatosis (PCH) patients from idiopathic PAH (IPAH). Characteristics of patients were compared using t test for continuous variables.

Results: Pathogenic BMPR2 mutations were detected most frequently in 32 (17.9%) IPAH and 5 (41.7%) heritable PAH (HPAH) patients by sequencing, and 12 BMPR2 CNVs called from the panel data were all successfully confirmed by MLPA analysis. In addition, homozygous or compound heterozygous EIF2AK4 mutations were identified in 6 patients, who should be corrected to a diagnosis of PVOD/PCH. Genotype-phenotype correlation analysis revealed that PAH patients with BMPR2 mutations were younger at diagnosis (27.2y vs. 31.6y, p = 0.0003) and exhibited more severe pulmonary hemodynamic impairment and a worse cardiac index compared with those without BMPR2 mutations.

Conclusions: The panel assay represented a highly valuable tool in PAH genetic testing, not only for the detection of small sequence alterations, but also for an indication of BMPR2 CNVs, which had implications for the specific samples to perform further MLPA assay. Analyses of PAH causal genes have a great help to clinical diagnosis and deep implications in disease treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5944100PMC
http://dx.doi.org/10.1186/s12931-018-0789-9DOI Listing

Publication Analysis

Top Keywords

genetic testing
12
pah
10
pulmonary arterial
8
arterial hypertension
8
bmpr2
8
panel data
8
bmpr2 mutations
8
bmpr2 cnvs
8
patients
6
genetic
5

Similar Publications

Purpose: Age stratification influences the clinicopathological features and survival outcomes of breast cancer. We aimed to understand the effect of age on gene variants in young Chinese women with breast cancer compared with those from The Cancer Genome Atlas (TCGA).

Methods: Enrolled patients ≤ 40 years old (N = 370) underwent germline or somatic genetic testing using a 32-gene hereditary cancer panel at Fujian Union Hospital.

View Article and Find Full Text PDF

Systemic Diseases in Patients with Congenital Aniridia: A Report from the Homburg Registry for Congenital Aniridia.

Ophthalmol Ther

January 2025

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany.

Introduction: Congenital aniridia is increasingly recognized as part of a complex syndrome with numerous ocular developmental anomalies and non-ocular systemic manifestations. This requires comprehensive care and treatment of affected patients. Our purpose was to analyze systemic diseases in patients with congenital aniridia within the Homburg Aniridia Registry.

View Article and Find Full Text PDF

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.

View Article and Find Full Text PDF

Genetic landscape in undiagnosed patients with syndromic hearing loss revealed by whole exome sequencing and phenotype similarity search.

Hum Genet

January 2025

Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.

There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.

View Article and Find Full Text PDF

Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!