Biocompatible Collagen Nanofibrils: An Approach for Sustainable Energy Harvesting and Battery-Free Humidity Sensor Applications.

ACS Appl Mater Interfaces

Nanomaterials & System Lab, Department of Mechatronics Engineering , Jeju National University, Engineering Building No:-4, D-130, Ara-1-Dong , Jeju-Si, Jeju-Do, Jeju 63243 , South Korea.

Published: June 2018

In contrast with the conventional ceramic/oxide humidity sensors (HSs), a self-powered piezoelectric biopolymer HS with reasonable sensitivity, reliability, and a nontoxic and eco-friendly nature is highly desirable. A piezoelectric nanogenerator (PNG)-driven biopolymer-based HS provides a pathway toward a sustainable and greener environment in the field of smart sensors. For that, a piezoelectric collagen nanofibril biopolymer coated on to a cotton fabric has dual functionality (energy harvesting and sensor). Collagen PNG generates a maximum of 45 V/250 nA upon 5 N and can also work as a sensor to measure various percentages of relative humidity (% RH). The HS shows a linear response with a good sensitivity (0.1287 μA/% RH) in the range of 50-90% RH. These results open a field of eco-friendly multifunctional nanomaterials toward the development of noninvasive, implantable smart bio-medical systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b02915DOI Listing

Publication Analysis

Top Keywords

energy harvesting
8
biocompatible collagen
4
collagen nanofibrils
4
nanofibrils approach
4
approach sustainable
4
sustainable energy
4
harvesting battery-free
4
battery-free humidity
4
humidity sensor
4
sensor applications
4

Similar Publications

A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ) are significantly improved from 8.

View Article and Find Full Text PDF

Vertical Farming Systems (VFS) emerge as an approach to optimize plant growth in urban and controlled environments, by enabling sustainable and intensive production in reduced spaces. VFS allow for greater control over growing conditions, such as light, temperature and humidity, resulting in higher quality crops and with less use of resources, such as water and fertilizers. This research investigates the effects of different lighting regimes (Constant and Gaussian) and spectral qualities (white, RBW, blue and red) on the growth, photosynthesis, and biomass accumulation of lentil microgreens () in VFS.

View Article and Find Full Text PDF

In this study, we investigate the thermoelectric properties of functionalized multi-walled carbon nanotubes (F-MWCNTs) dispersed over a flexible substrate through a facile vacuum filtration route. To improve their interfacial adhesion and dispersion, F-MWCNTs underwent hot-pressing. The heat-treatment has improved the nanotubes' connections and subsequently reduced porosity as well, which results in an increasing electrical conductivity upon increasing temperature of hot-pressing.

View Article and Find Full Text PDF

Strain-Reduced Inversion Symmetry in Ultrathin SnPSe Crystals for Giant Bulk Piezophotovoltaic Generation.

ACS Nano

January 2025

Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

With the potential to surpass the Shockley-Queisser (S-Q) limitation for solar energy conversion, the bulk photovoltaic (BPV) effect, which is induced by the broken inversion symmetry of the lattice, presents prospects for future light-harvesting technologies. However, the development of BPV is largely limited by the low solar spectrum conversion efficiency of existing noncentrosymmetric materials with wide band gaps. This study reports that the strain-induced reduction of inversion symmetry can enhance the second-order nonlinear susceptibility (χ) of SnPSe crystals by an order of magnitude, which contributes to an extremely high value of 1.

View Article and Find Full Text PDF

Food commodities, including mycotoxins naturally produced from toxigenic fungi (pre- or post-harvest), are particularly vulnerable to contamination. The study intended to use unique bioactive composites loaded with antimicrobial constituents for food packaging. Three composite types are based on carboxymethyl cellulose/shellac (CMC/SH) and loaded with pomegranate extract (POE) with or without jojoba oil (JOE) at various concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!