Advances in enzyme bioelectrochemistry.

An Acad Bras Cienc

São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.

Published: May 2018

Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans) where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765201820170514DOI Listing

Publication Analysis

Top Keywords

enzyme bioelectrochemistry
8
redox enzymes
8
advances enzyme
4
bioelectrochemistry bioelectrochemistry
4
bioelectrochemistry defined
4
defined branch
4
branch chemical
4
chemical science
4
science concerned
4
concerned electron-proton
4

Similar Publications

Cystatin C (Cys-C) is emerging as a critical biomarker for assess gestational diabetes mellitus (GDM), a condition that significantly impacts maternal and fetal health. In this study, we developed a novel label-free electrochemical immunosensor designed for point-of-care applications, offering lower reagent consumption and rapid detection of Cys-C in pregnant women with GDM. Compared to traditional enzyme-linked immunosorbent assays (ELISA), the sensor demonstrates enhanced sensitivity, reduced reagent usage, and faster detection.

View Article and Find Full Text PDF

Development of Ni-ZnO-ACE-2 peptide hybrids as electrochemical devices for SARS-CoV-2 spike protein detection.

Bioelectrochemistry

January 2025

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:

Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.

View Article and Find Full Text PDF

Dual signal amplification in ECL biosensors: A novel approach for argonaute2 detection using SAHARA CRISPR-Cas12a technology.

Bioelectrochemistry

December 2024

West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China. Electronic address:

Argonaute 2 (Ago2) is a crucial enzyme in the RNA interference (RNAi) pathway, essential for gene silencing via the cleavage of target messenger RNA (mRNA) mediated by microRNA (miRNA) or small interfering RNA (siRNA). The activity of Ago2 is a significant biomarker for various diseases, including cancer and viral infections, necessitating precise monitoring techniques. Traditional methods for detecting Ago2 activity are often cumbersome and lack the necessary sensitivity and specificity for low-abundance targets in complex samples.

View Article and Find Full Text PDF

A label-free electrochemical biosensor for sensitive analysis of the PARP-1 activity.

Bioelectrochemistry

December 2024

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:

Early diagnosis of tumors is becoming increasingly important in modern healthcare. As studies have demonstrated, Poly(ADP)ribose polymerase-1 (PARP-1) is overexpressed in more aggressive tumors. Consequently, sensitive detection of PARP-1 activity holds significant practical importance in clinical diagnostics and biomedical research.

View Article and Find Full Text PDF

Cardiac troponin I (cTnI) is known to be among the prominent diagnostic bio-marker for acute myocardial infarction (AMI). In this paper, we proposed an electrochemical aptasensor with nanomaterial MoS/CuS-Au as the substrate material and perillaldehyde (PA) as the surface-initiated reversible addition fragmentation chain transfer (SI-RAFT) polymerization monomer by mediating the in-situ deposition of silver metal on the electrode surface for ultrasensitive detection of cTnI. The substrate material MoS/CuS-Au not only accelerated the rate transfer between electron, but also provided more active sites for aptamers introduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!