Atherosclerosis is a systemic disease characterized by the deposition of cholesterol and inflammatory cells within the arterial wall. Removal of cholesterol from the vessel wall may have an impact on the size and composition of atherosclerotic lesions. Anionic phospholipids or liposome vesicles composed of a lipid bilayer such as nanoliposomes have been suggested as treatments for dyslipidemia. In this study, we investigated the effect of anionic nanoliposomes on atherosclerosis in a mouse model. Low-density lipoprotein receptor knockout mice (Ldlr ) were fed with an atherosclerosis promoting high fat and cholesterol (HFC) diet for 12 weeks. Anionic nanoliposomes including hydrogenated soy phosphatidylcholine (HSPC) and distearoyl phosphatidylglycerol (DSPG) (molar ratio: 1:3) were injected intravenously into HFC-fed Ldlr mice once a week for 4 weeks. Mice receiving nanoliposomes had significantly reduced atherosclerosis within the aortic arch as assessed by Sudan IV staining area (p = 0.007), and reduced intima/media ratio (p = 0.030) and greater collagen deposition within atherosclerosis plaques within the brachiocephalic artery (p = 0.007), compared to control mice. Administration of nanoliposomes enhanced markers of reverse cholesterol transport (RCT) and increased markers of plaque stability in HFC-fed Ldlr mice. Reduced cholesterol accumulation was observed in the liver along with the up-regulation of the major genes involved in the efflux of cholesterol such as hepatic ATP-binding cassette transporters (ABC) including Abc-a1, Abc-g1, Abc-g5, and Abc-g8, Scavenger receptor class B, member 1 (Scarb1), and Liver X receptor alpha (Lxr)-α. Lecithin Cholesterol Acyltransferase activity within the plasma was also increased in mice receiving nanoliposomes. Anionic nanoliposome administration reduced atherosclerosis in HFC-fed Ldlr mice by promoting RCT and upregulating the ABC-A1/ABC-G1 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26610DOI Listing

Publication Analysis

Top Keywords

anionic nanoliposomes
12
reduced atherosclerosis
12
hfc-fed ldlr
12
ldlr mice
12
nanoliposomes reduced
8
lipoprotein receptor
8
mice
8
high fat
8
mice receiving
8
receiving nanoliposomes
8

Similar Publications

Article Synopsis
  • Researchers developed a new, cost-effective micromixing technique for creating liposome nanoformulations, comparing it to the conventional thin-film hydration (TFH) method.
  • The study used simulations and experimental design to determine optimal conditions for producing anionic liposomes, with both methods resulting in similar properties such as size, encapsulation efficiency, and stability.
  • The micromixing method offers a one-step production process that is highly controllable, reproducible, and compatible with various solvents, making it a versatile alternative for nanoliposome manufacturing.
View Article and Find Full Text PDF

Bioprinting has enabled the creation of intricate scaffolds that replicate the physical, chemical, and structural characteristics of natural tissues. Recently, hydrogels have been used to fabricate such scaffolds for several biomedical applications and tissue engineering. However, the small pore size of conventional hydrogels impedes cellular migration into and remodeling of scaffolds, diminishing their regenerative potential.

View Article and Find Full Text PDF

Nanocochleates as novel delivery vehicles for enhancement of water solubility, stability and controlled release of dihydromyricetin in gastrointestinal tract.

Food Res Int

December 2024

School of Agricultural Engineering and Food Science, Shandong University of Technology, Xincun West Road, Zibo, Shandong Province 255000, PR China. Electronic address:

Article Synopsis
  • Dihydromyricetin (DHM) has great antioxidant and anti-inflammatory benefits, but its effectiveness is hindered by poor absorption in the body.
  • Researchers created DHM-loaded nanocochleates to enhance its solubility, stability, and release, achieving better results compared to traditional nanoliposomes.
  • The study showed that nanocochleates improved water solubility, antioxidant activity, and stability of DHM, while also offering controlled release in the gastrointestinal system, positioning them as promising delivery methods for functional foods.
View Article and Find Full Text PDF

Charge-Stabilized Nanodiscs as a New Class of Lipid Nanoparticles.

Adv Mater

December 2024

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.

Nanoparticles have the potential to improve disease treatment and diagnosis due to their ability to incorporate drugs, alter pharmacokinetics, and enable tissue targeting. While considerable effort is placed on developing spherical lipid-based nanocarriers, recent evidence suggests that high aspect ratio lipid nanocarriers can exhibit enhanced disease site targeting and altered cellular interactions. However, the assembly of lipid-based nanoparticles into non-spherical morphologies has typically required incorporating additional agents such as synthetic polymers, proteins, lipid-polymer conjugates, or detergents.

View Article and Find Full Text PDF

In the present study, a novel nanoliposome loaded with curcumin (Cur) (NNLs-Cur) was established to overcome the gastrointestinal digestive barrier and enhance mitochondrial targeting capacity, exerting the antioxidant capacity of Cur. Noteworthy, NNLs-Cur was modified by pectin, whey protein isolates and hyaluronic acid. The results showed that the structure of traditional nanoliposomes loaded with Cur (NLs-Cur) was destroyed during digestion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!