The presence of a bromide substituent, instead of a hydrogen or methyl group, on a carbon-carbon double bond, protects the alkene from addition reactions when exposed to trifluoroacetic acid. This concept is used to circumvent concomitant loss of unsaturation in a late-stage acid-catalysed 6,8- to 2,8-dioxabicyclo[3.2.1]octane rearrangement towards (-)-6,7-dideoxysqualestatin H5. The inertness of the alkenyl bromide functionality is demonstrated through several synthetic transformations in the assembly of the rearrangement substrate. Completion of the natural product synthesis is facilitated by post-rearrangement removal of the bromide substituent through stereoselective C-C cross-coupling in the presence of ester and hydroxyl functionalities.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc02690dDOI Listing

Publication Analysis

Top Keywords

bromide substituent
12
alkene protection
4
protection acid
4
bromide
4
acid bromide
4
substituent application
4
application total
4
total synthesis
4
synthesis --67-dideoxysqualestatin
4
--67-dideoxysqualestatin presence
4

Similar Publications

Comparison of the reactivity of sialyl chlorides and bromides based on -acetylneuraminic acid (Neu5Ac) and its deaminated analogue (KDN) in reactions with MeOH and -PrOH without a promoter revealed that the acetoxy group at C-5 in a molecule of a sialic acid glycosyl donor can destabilize the corresponding glycosyl cation making the S1-like reaction pathway unfavorable. A change to the S2-like reaction pathway ensures preferential formation of the α-glycoside.

View Article and Find Full Text PDF

The cation of the title salt, CHNO ·Br, has a dihedral angle of 24.26 (6)° between its fused imidazole and 4-nitro-phenyl rings and the N-C-C-O torsion angle associated with the hy-droxy-ethyl substituent is 60.15 (17)°.

View Article and Find Full Text PDF

The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event.

View Article and Find Full Text PDF

Palladium-catalyzed carbonylation reactions of -phenylene dihalides were studied using aminoethanols as heterobifunctional ,-nucleophiles. The activity of aryl-iodide and -bromide as well as the chemoselective transformation of amine and hydroxyl functionalities were studied systematically under carbonylation conditions. Aminocarbonylation can be selectively realized under optimized conditions, enabling the formation of amide alcohols, and the challenging alkoxycarbonylation can also be proved feasible, enabling amide-ester production.

View Article and Find Full Text PDF

In vitro nephrotoxicity and structure-toxicity relationships of eight natural aristolactams.

Toxicon

December 2024

Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China. Electronic address:

Article Synopsis
  • - The study investigates the nephrotoxic effects of eight natural aristolactams (ALs) on HK-2 human kidney cells, highlighting their structural similarities to aristolochic acids (AAs), which raises safety concerns due to wider distribution of ALs in plants.
  • - Results from MTT and ELISA assays indicate that all tested ALs exhibit nephrotoxicity, with AL Ⅰ, AL BⅡ, and velutinam showing the strongest cytotoxic effects, while structure-toxicity relationships reveal key functional groups influencing their toxicity levels.
  • - The study found that the most harmful ALs not only cause increased kidney injury marker levels (KIM-1) and oxidative stress but also promote fibrosis
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!