A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sub-Angstrom Gold Nanoparticle/Liposome Interfaces Controlled by Halides. | LitMetric

Sub-Angstrom Gold Nanoparticle/Liposome Interfaces Controlled by Halides.

Langmuir

Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo, Waterloo , Ontario N2L 3G1 , Canada.

Published: June 2018

A hallmark of nanoscience is size-dependent and distance-dependent physical properties. Although most previous studies focused on optical properties, which are often tuned at nanometer scale, we herein report on the interaction between halide-capped gold nanoparticles (AuNPs) and phosphocholine (PC) liposomes at the sub-Angstrom level. Halide-capped AuNPs are adsorbed by PC liposomes attributable to van der Waals force. Iodide-capped AuNPs interact much more weakly with the liposomes compared with bromide- and chloride-capped AuNPs, as indicated by a liposome leakage assay and differential scanning calorimetry. This is explained by the slightly larger size of iodide separating the AuNP core more from the liposome surface. Cryo-transmission electron microscopy indicates that the liposomes remain intact when mixed with these halide-capped AuNPs of 13 or 70 nm in diameter. Other even larger ligands, including small thiol compounds, DNA oligonucleotides, proteins, and polymers, fully blocked the interaction, whereas AuNPs dispersed in noninteracting ions, including fluoride, phosphate, perchlorate, nitrate, sulfate, and bicarbonate, are still adsorbed strongly by 1,2-dioleoyl- sn-glycero-3-phosphocholine liposomes. Taken together, halides can be used to control interparticle distances at an extremely small scale with remarkable effects on materials properties, allowing surface probing, biosensor development, and fundamental surface science studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b01138DOI Listing

Publication Analysis

Top Keywords

halide-capped aunps
8
aunps
6
liposomes
5
sub-angstrom gold
4
gold nanoparticle/liposome
4
nanoparticle/liposome interfaces
4
interfaces controlled
4
controlled halides
4
halides hallmark
4
hallmark nanoscience
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!