Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we developed a model for photosynthetic production in double cropping rice by integrating the advantages in current crop models (including the models of canopy structure, canopy light distribution, canopy photosynthesis and dry matter production). The canopy light distribution and dry matter accumulation were preliminarily validated with independent field experiment datasets. The distribution of direct radiation both on a level surface and on the leaf surface within canopy, the canopy daily photosynthate and its characteristics with varying leaf area index for three typical plant types (erect both upper and lower, upper erect and lower flat, and flat both upper and lower) were quantitatively analyzed by the model. The results indicated that there was a good agreement between the simulated and observed values. The root mean square error (RMSE), relative root mean square error (RRMSE) and correlation coefficient (r) of prediction of canopy light distribution in double cropping rice were 12.01 J ·m·s, 8.2% and 0.9929, respectively. Meanwhile, the RMSE, RRMSE and r of prediction of dry matter accumulation were 0.83 t·hm, 14.6% and 0.9772, respectively. It was indicated that the model had a performance. The upper erect and lower flat plant type had highest canopy daily photosynthate due to higher incident sun light received on the leaf surface, leaf photosynthetic efficiency and leaf area index.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201704.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!