Water is the key factor limiting plant growth in seasonal arid area. In order to analyze the water sources of community plant (Platycladus orientalis, Vitex negundo var. heterophylla, Broussonetia papyrifera and Lespedeza bicolor) in Beijing mountainous area, we measured hydrogen and oxygen stable isotope ratio (δD and δO) values of their xylem water and potential water sources. The results showed the four species had different water sources. P. orientalis mainly absorbed water from 40-60, 60-80 and 80-100 cm soil layers, and the utilization ratio of the three layers was 23.3%-25.9%. It still grabbed water from 0-20 and 20-40 cm soil layers with the utilization ratio of 12.3% and 13.0%, respectively. V. negundo var. heterophylla mainly absorbed 60-80 and 80-100 cm depth soil water, and the utilization rate was 51.9% and 25.2%, respectively, while it barely absorbed water in other soil layers. B. papyrifera mainly absorbed 0-20 and 20-40 cm depth soil water, and the utilization rate was 47.5% and 36.8%, respectively. L. bicolor used the water from five layers, and the utilization ratio of 0-20, 20-40 and 40-60 cm layer was 21.4%-22.8%, and that of 60-80 and 80-100 cm layer was 15.2%-18.3%, respectively. The competition was higher in mixed forest of P. orientalis and L. bicolor because they had similar water sources. It was better to mix V. negundo var. heterophylla and B. papyrifera because their water sources were complementary. The results could provide reference for the best combination of plant species to restore the damaged ecological environment.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201707.012DOI Listing

Publication Analysis

Top Keywords

water sources
20
water
13
negundo var
12
var heterophylla
12
60-80 80-100
12
soil layers
12
layers utilization
12
utilization ratio
12
0-20 20-40
12
absorbed water
8

Similar Publications

Identification of plant-based spilled oils using direct analysis in real-time-time-of-flight mass spectrometry with hydrophobic paper sampling.

Environ Monit Assess

January 2025

Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.

Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.

View Article and Find Full Text PDF

This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.

View Article and Find Full Text PDF

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Electrochemical water splitting is a pivotal technology for storing intermittent electricity from renewable sources into hydrogen fuel. However, its overall energy efficiency is impeded by the sluggish oxygen evolution reaction (OER) at the anode. In the quest to design high-performance anode catalysts for driving the OER under non-acidic conditions, iron (Fe) has emerged as a crucial element.

View Article and Find Full Text PDF

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!