The effects of cow manure and green manure on maize yield, soil respiration and soil physical-chemical properties in land restoration area was evaluated through field experiments. The results indicated that the maize yield and thousand-grain mass with cow manure were increased by 7.2%-29.9% and 2.5%-18.2%, respectively compared with the application of chemical fertilizer (CF), while the soil active organic carbon and organic matter contents of cow manure were 5.3%-34.6% and 8.0%-17.6% higher than that obtained in CF. The maize yield and thousand-grain mass were increased by 10.8%-15.6% and 4.5%-8.4% with application of green manure, respectively compared with CF. The content of active organic carbon in green manure was 14.1%-48.6% higher than that detected in CF. In the second year, the content of organic matter in green manure treatment was 7.2% higher than that of CF. The soil respiration rates under cow manure and green manure treatments increased by 20.0%-69.3% compared with CF. CF and green manure could improve the soil bulk density and increase the aggregate ratios of <0.01 mm and 0.05-1 mm fractions, respectively. On the other hand, the cow manure and green manure could decrease the soil total porosity and the capillary porosity. In conclusion, the application of cow manure and green manure in land restoration region could increase maize yield during the two consecutive seasons, which showed a positive response to improvement of soil physical-chemical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201703.024 | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China.
Inoculating zinc solubilizing microorganisms (ZSMs) is considered as a promising strategy for increasing Zn phytoavailability in soils with low Zn availability. In present study, we screened six strains of ZSMs from rhizosphere of green manure crop, including three strains of fungi, , and three strains of bacteria, . We conducted a pot experiment of Bok choy inoculated with different ZSMs to analyze the Zn content in shoots and roots, and compared the Zn solubilizing effect of ZSMs.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
The construction of "zero-free cities" is an effective plan to achieve the carbon peak plan, reduce pollution and carbon emissions, and promote a circular economy. Based on the WARM model and Emission factor method, the total carbon emission reduction of solid waste sources and disposal in each field during the implementation of the zero-free city policy in Chongqing (2017-2021) was calculated, and the total carbon emission reduction of solid waste in each field in 2025 was predicted by scenario. The results showed that: ① After the implementation of cleaner production and green manufacturing policies in Chongqing, the generation intensity of general industrial solid waste decreased to 0.
View Article and Find Full Text PDFBMC Genomics
December 2024
Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia.
Background: Lablab is one of the conventionally grown multi-purpose crops that originated in Africa. It is an annual or short-lived perennial forage legume which has versatile uses (as a vegetable and dry seeds, as food or feed, or as green manure) but is yet to receive adequate research attention and hence remains underexploited. To develop new and highly productive lablab varieties, using genomics-assisted selection, the present study aimed to identify quantitative trait loci associated with agronomically important traits in lablab and to assess the stability of these traits across two different agro-ecologies in Ethiopia.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China. Electronic address:
Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!