The aim of this study was to investigate the use of 3D optical localization of multiple surface control points for deep inspiration breath-hold (DIBH) guidance in left-breast radiotherapy treatments. Ten left-breast cancer patients underwent whole-breast DIBH radiotherapy controlled by the Real-time Position Management (RPM) system. The reproducibility of the tumor bed (i.e., target) was assessed by the position of implanted clips, acquired through in-room kV imaging. Six to eight passive fiducials were positioned on the patients' thoraco-abdominal surface and localized intrafractionally by means of an infrared 3D optical tracking system. The point-based registration between treatment and planning fiducials coordinates was applied to estimate the interfraction variations in patients' breathing baseline and to improve target reproducibility. The RPM-based DIBH control resulted in a 3D error in target reproducibility of 5.8 ± 3.4 mm (median value ± interquartile range) across all patients. The reproducibility errors proved correlated with the interfraction baseline variations, which reached 7.7 mm for the single patient. The contribution of surface fiducials registration allowed a statistically significant reduction (p < 0.05) in target localization errors, measuring 3.4 ± 1.7 mm in 3D. The 3D optical monitoring of multiple surface control points may help to optimize the use of the RPM system for improving target reproducibility in left-breast DIBH irradiation, providing insights on breathing baseline variations and increasing the robustness of external surrogates for DIBH guidance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036357PMC
http://dx.doi.org/10.1002/acm2.12321DOI Listing

Publication Analysis

Top Keywords

deep inspiration
8
inspiration breath-hold
8
surface control
8
control points
8
target reproducibility
8
reproducibility
5
target
4
target position
4
position reproducibility
4
reproducibility left-breast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!