Electrically controllable magnetism, which requires the field-effect manipulation of both charge and spin degrees of freedom, has attracted growing interest since the emergence of spintronics. We report the reversible electrical switching of ferromagnetic (FM) states in platinum (Pt) thin films by introducing paramagnetic ionic liquid (PIL) as the gating media. The paramagnetic ionic gating controls the movement of ions with magnetic moments, which induces itinerant ferromagnetism on the surface of Pt films, with large coercivity and perpendicular anisotropy mimicking the ideal two-dimensional Ising-type FM state. The electrical transport of the induced FM state shows Kondo effect at low temperature, suggesting spatially separated coexistence of Kondo scattering beneath the FM interface. The tunable FM state indicates that paramagnetic ionic gating could serve as a versatile method to induce rich transport phenomena combining field effect and magnetism at PIL-gated interfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938224PMC
http://dx.doi.org/10.1126/sciadv.aar2030DOI Listing

Publication Analysis

Top Keywords

paramagnetic ionic
16
ionic gating
12
inducing ferromagnetism
4
ferromagnetism kondo
4
kondo platinum
4
paramagnetic
4
platinum paramagnetic
4
ionic
4
gating
4
gating electrically
4

Similar Publications

Using NMR Spectroscopy to Evaluate Metal-Ligand Bond Covalency for the f Elements.

Acc Chem Res

January 2025

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.

ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.

View Article and Find Full Text PDF

Two Co(II) mixed-ligand metal-organic frameworks (MOFs) based on 2-methylimidazole and trimesate were synthesised at room temperature. The structure and properties of the two MOFs, named material Deutsches Elektronen Synchrotron-1 and -2 (mDESY-1 and mDESY-2), were verified by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), SQUID magnetic susceptibility and N adsorption. The structural analysis indicates that mDESY-1 is a 3D ionic framework with 2-methyl-1-imidazol-3-ium counterions residing in its pores, while mDESY-2 is a 2D neutral framework isostructural to ITH-1, with water as a co-crystallising solvent.

View Article and Find Full Text PDF

Spin Glass Transition of Magnetic Ionic Liquids Induced by Self-Assembly.

Langmuir

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.

Spin glass (SG), in which the spins are glassy, has attracted broad attention for theoretical study and prospective application. SG states are generally related to disordered or frustrated spin systems, which are usually observed in inorganic magnets. Herein, supramolecular magnetic ionic liquid (TMTBDI[FeCl]) self-assemblies are prepared by solution self-assembly via hydrophobic and π-π stacking interactions.

View Article and Find Full Text PDF

This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity.

View Article and Find Full Text PDF

Nitrogen-phosphorus codoped biochar prepared from tannic acid for degradation of trace antibiotics in wastewater.

Environ Res

February 2025

Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China. Electronic address:

This study was designed to develop a one-step pyrolysis process that could efficiently activate peroxymonosulfate (PMS) and degrade tetracycline hydrochloride (TCH) by producing N, and P codoped carbon materials (NPTC-800). Furthermore, it exhibited a high specific surface area (658 cm), a larger pore volume (0.3 cm), and a certain content of heteroatoms (nitrogen and phosphorus).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!