Optogenetic Control of Neural Circuits in the Mongolian Gerbil.

Front Cell Neurosci

Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany.

Published: April 2018

The Mongolian gerbil () is widely used as a model organism for the human auditory system. Its hearing range is very similar to ours and it uses the same mechanisms for sound localization. The auditory circuits underlying these functions have been characterized. However, important mechanistic details are still under debate. To elucidate these issues, precise and reversible optogenetic manipulation of neuronal activity in this complex circuitry is required. However, genetic and genomic resources for the Mongolian gerbil are poorly developed. Here, we demonstrate a reliable gene delivery system using an AAV8(Y337F)-pseudotyped recombinant adeno-associated virus (AAV) 2-based vector in which the pan-neural human synapsin (hSyn) promoter drives neuron-specific expression of CatCH (Ca-permeable channelrhodopsin) or NpHR3.0 ( halorhodopsin). After stereotactic injection into the gerbil's auditory brainstem (medial nucleus of the trapezoid body, dorsal nucleus of the lateral lemniscus) and midbrain [inferior colliculus (IC)], we characterized CatCH- and/or NpHR3.0-transduced neurons in acute brain slices by means of whole-cell patch-clamp recordings. As the response properties of optogenetic tools strongly depend on neuronal biophysics, this parameterization is crucial for their application. In a proof-of-principle experiment in anesthetized gerbils, we observed strong suppression of sound-evoked neural responses in the dorsal nucleus of the lateral lemniscus (DNLL) and IC upon light activation of NpHR3.0. The successful validation of gene delivery and optogenetic tools in the Mongolian gerbil paves the way for future studies of the auditory circuits in this model system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928259PMC
http://dx.doi.org/10.3389/fncel.2018.00111DOI Listing

Publication Analysis

Top Keywords

mongolian gerbil
16
auditory circuits
8
gene delivery
8
dorsal nucleus
8
nucleus lateral
8
lateral lemniscus
8
optogenetic tools
8
optogenetic
4
optogenetic control
4
control neural
4

Similar Publications

Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic lesion. We know very well the kinetics of induction and repair of different types of DNA damage in different organisms and cell lines.

View Article and Find Full Text PDF

This study aims to verify the effects of prolonged ingestion of coconut oil on the adrenal glands of Mongolian gerbils. Mongolian gerbils were used as an experimental model due to the morphological similarity of the adrenal glands to those of primates. Male Mongolian gerbils, 3 months of age, were divided into three experimental groups (n = 12): an intact control group, which received no treatment, a gavage control group, which received 0.

View Article and Find Full Text PDF

Theoretically, animals with longer hindlimbs are better jumpers, while those with shorter hindlimbs are better maneuverers. Yet experimental evidence of this relationship in mammals is lacking. We compared jump force and maneuverability in a lab population of Mongolian gerbils (Meriones unguiculatus).

View Article and Find Full Text PDF

Neural correlates of perceptual plasticity in the auditory midbrain and thalamus.

J Neurosci

January 2025

Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742.

Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood.

View Article and Find Full Text PDF

Coconut Oil Mitigates the Effects of Aging on the Mongolian Gerbil Prostate.

Prostate

December 2024

Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.

Background: Benign prostatic hyperplasia (BPH) is a disease linked to the hormonal imbalance that occurs during aging and over the last decades, complementary and alternative medicines have come on the scene as a treatment option for BPH, such as herbal medicines. Coconut oil has been shown to be capable of interfering in testosterone-induced BPH. However, until now there is no study of the effect of coconut oil during aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!