Open heart surgeries are common for treating ischemic and heart valve disease. During cardiac surgery, cardiopulmonary bypass (CPB) can temporarily take over the function of heart and lungs. However, elevated red blood cell (RBC) aggregation may lead to the common side-effects such as microinfarction. We investigated blood physical properties changes and the correlation between blood microstructure, viscoelastic response and biochemical changes following surgery with CPB. We examined shear-rate dependent blood viscosity, elasticity and RBC aggregate size in the pre-surgery disease state, post-surgery state and long-term recovery state of cardiac surgical patients. Within a week following surgery, the patient hematocrit was significantly lower due to CPB. Despite lower RBC concentration, the RBC aggregate shape became larger and more rounded, which is correlated to the elevated plasma fibrinogen related to systemic inflammatory response. During the same period, the hematocrit-adjusted low shear rate viscosity increased significantly, as did the yield stress, indicating more solid-like behavior for blood. Six months to one year later, all the physical and biochemical properties measured returned to baseline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940777PMC
http://dx.doi.org/10.1038/s41598-018-25317-8DOI Listing

Publication Analysis

Top Keywords

low shear
8
shear rate
8
rate viscosity
8
rbc aggregation
8
cardiac surgery
8
rbc aggregate
8
blood
6
rbc
5
increased low
4
viscosity blood
4

Similar Publications

Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.

View Article and Find Full Text PDF

A Microflow Chip Technique for Monitoring Platelets in Late Pregnancy: A Possible Risk Factor for Thrombosis.

J Blood Med

January 2025

Department of Blood Transfusion of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, People's Republic of China.

Purpose: To study the platelet adhesion and aggregation behaviour of late pregnancy women under arterial shear rate using microfluidic chip technology and evaluate the risk of thrombosis in late pregnancy.

Methods: We included pregnant women who were registered in the obstetrics department of our hospital between January 2021 and October 2022 and underwent regular prenatal examinations. Blood samples were collected at 32-35 weeks of gestation for routine blood tests and progesterone, oestradiol, and platelet aggregation function.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Objective: The study aims to elucidate the mechanisms underlying plaque growth by analyzing the variations in hemodynamic parameters within the plaque region of patients' carotid arteries before and after the development of atherosclerotic lesions.

Methods: The study enrolls 25 patients with common carotid artery stenosis and 25 with tandem carotid artery stenosis. Based on pathological analysis, three-dimensional models of the actual blood vessels before and after the lesion are constructed for two patients within a two-year period.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers propose a new method for creating multiple shape memory polymers (SMPs) by mixing immiscible polymers under high pressure and shear, rather than traditional blending techniques.
  • This approach allows for nanoscale homogeneity (40-95 nm) in the blends, improving both shape memory and mechanical performance.
  • The study focused on a blend of polypropylene (PP) and polystyrene (PS), demonstrating that the processed blend achieves a strong triple shape memory effect with high shape fixation and recoverability, along with adjustable transition temperatures.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!