Glial-neuronal cross-talk has a critical role in the development of neurodegenerative conditions, including Alzheimer's Disease, where it affects neuronal responses to β-amyloid peptide (Aβ)-induced toxicity. We set out to identify factors regulating synaptic responses to Aβ, dissecting the specific role of glial signaling. A low concentration of aggregated Aβ42 induced selective up-regulation of mature brain-derived neurotrophic factor (BDNF) expression and release in rat organotypic hippocampal cultures as well as in cortical pure microglia. Conditioned media from resting (CMC) or Aβ42-treated (CMA) microglia were tested for their effects on synaptophysin expression in SH-SY5Y neuronal-like cells during challenge with Aβ42. Both CMC and CMA prevented Aβ-induced synaptophysin loss. In the presence of Aβ + CMA, synaptophysin was over-expressed, although it appeared partly clumped in cell bodies. Synaptophysin over-expression was not directly dependent on BDNF signaling on neuronal-like cells, but relied on autocrine BDNF action on microglia. FM1-43 labeling experiments revealed compromised synaptic vesicle recycling in Aβ42-treated neuronal-like cells, rescued by microglial conditioned medium. In these conditions, significant and prolonged neuroprotection was observed. Our results point to microglia as a target for early intervention, given its positive role in supporting neuronal compensatory responses to Aβ synaptotoxicity, which potentially lead to their extended survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940848 | PMC |
http://dx.doi.org/10.1038/s41598-018-25453-1 | DOI Listing |
Nutrients
November 2024
Department Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90133 Palermo, Italy.
The "Cell Cycle Hypothesis" suggests that the abnormal re-entry of neurons into the cell division cycle leads to neurodegeneration, a mechanism supported by in vitro studies on neuronal-like cells treated with the hyperphosphorylating agent forskolin. Pterostilbene, a bioavailable compound found in foods such as blueberries and grapes, may exert neuroprotective effects and could serve as a potential adjunct therapy for neurodegenerative diseases. .
View Article and Find Full Text PDFACS Chem Neurosci
December 2024
Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States.
Per- and polyfluorinated alkyl substances (PFAS) are pervasive environmental contaminants that bioaccumulate in tissues and pose risks to human health. Increasing evidence links PFAS to neurodegenerative and behavioral disorders, yet the underlying mechanisms of their effects on neuronal function remain largely unexplored. In this study, we utilized SH-SY5Y neuroblastoma cells, differentiated into neuronal-like cells, to investigate the impact of six PFAS compounds─perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorodecanesulfonic acid (PFDS), 8:2 fluorotelomer sulfonate (8:2 FTS), and 8:2 fluorotelomer alcohol (8:2 FTOH)─on neuronal health.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2024
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States.
Introduction: Double C2-like domain beta (DOC2B) is a vesicle priming protein critical for glucose-stimulated insulin secretion in β-cells. Individuals with type 1 diabetes (T1D) have lower levels of DOC2B in their residual functional β-cell mass and platelets, a phenotype also observed in a mouse model of T1D. Thus, DOC2B levels could provide important information on β-cell dys(function).
View Article and Find Full Text PDFFront Cell Dev Biol
September 2024
Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan.
Plasmalogens (Pls) are specialized phospholipids integral to brain health, whose decline due to aging and stress contributes to cognitive impairment and neuroinflammation. This study explores the potential of a novel Pls derivative, KIT-13 (1-O-octadecyl-2-arachidonoyl-sn-glycerol-3-phosphoethanolamine), in mitigating neuroinflammation and enhancing cognition. When administered to mice, KIT-13 exhibited potent memory enhancement attributed to upregulated brain-derived neurotrophic factor (BDNF), a key player in cognitive processes.
View Article and Find Full Text PDFEur J Neurosci
October 2024
Department of Pharmacy, University of Pisa, Pisa, Italy.
Microglia are resident brain cells that regulate neuronal development and innate immunity. Microglia activation participates in the cellular response to neuroinflammation, thus representing a possible target for pharmacological strategies aimed to counteract the onset and progression of brain disorders, including depression. Antidepressant drugs have been reported to reduce neuroinflammation by acting also on glial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!