Rocket is rich in glucosinolates and valued for its hot and spicy taste. Here we report the structure elucidation, bioactivity, and stability of the mainly formed glucosinolate hydrolysis product, namely sativin, which was formerly thought to be 4-mercaptobutyl isothiocyanate. However, by NMR characterization we revealed that sativin is in fact 1,3-thiazepane-2-thione, a tautomer of 4-mercaptobutyl isothiocyanate with 7-membered ring structure and so far unknown. This finding was further substantiated by conformation sampling using molecular modeling and total enthalpy calculation with density functional theory. During aqueous heat treatment sativin in general was quite stable, while the isothiocyanates erucin and sulforaphane were labile, having half-lives of 132 min and 56 min (pH 5, 100 °C), respectively. Moreover, using a WST-1 assay, we found that sativin did not reduce cell viability of HepG2 cells in a range of 0.3-30 µM, and, therefore, exhibited no cytotoxic effects in this cell line.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2018.04.023DOI Listing

Publication Analysis

Top Keywords

glucosinolate hydrolysis
8
hydrolysis product
8
bioactivity stability
8
4-mercaptobutyl isothiocyanate
8
sativin
5
major glucosinolate
4
product rocket
4
rocket eruca
4
eruca sativa
4
sativa sativin
4

Similar Publications

Unlabelled: While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits.

Background/objectives: Broccoli ( L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health benefits.

View Article and Find Full Text PDF

Glucosinolates are chemically stable compounds that exhibit biological activity in the body following hydrolysis catalyzed by the enzyme myrosinase. While existing and studies suggest that the hydrolysis products of glucosinolates predominantly exert beneficial effects in both human and animal organisms, some studies have found that the excessive consumption of glucosinolates may lead to toxic and anti-nutritional effects. Given that glucosinolates are primarily ingested in the human diet through dietary supplements and commercially available cruciferous vegetables, we investigated the effects of the glucosinolate sinigrin on molecular markers in the myocardia of healthy Swiss mice.

View Article and Find Full Text PDF

Sprouts and microgreens which belong to the Brassicaceae family contain significantly more glucosinolates than mature vegetables, and their composition often differs too. These plant growth stages can be a valuable supplement of the aforementioned compounds in the diet. The content and proportion of individual glucosinolates in sprouts and microgreens can be regulated by modifying the length and temperature of cultivation, the type of light, the use of mineral compounds, elicitation, primming, and cold plasma as well as storage conditions.

View Article and Find Full Text PDF

The Anti-AGEing and RAGEing Potential of Isothiocyanates.

Molecules

December 2024

Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.

Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health.

View Article and Find Full Text PDF

Nitrilases, found to have a common presence in the plant kingdom, are capable of converting nitriles into their corresponding carboxylic acids through hydrolysis. In Arabidopsis, the nitrilases NIT1, NIT2, and NIT3 catalyze the formation of indole-3-acetonitrile (IAN) into indole-3-acetic acid (IAA). Notably, IAN can originate from the breakdown products of indole glucosinolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!