Background: Biologic treatment options for cartilage injuries require chondrocyte expansion using cell culture. Clinical application is accomplished in two surgical sessions and is expensive. If isolation of chondrocytes and stimulus for proliferation and extracellular matrix synthesis can be achieved in vivo, the treatment can be performed in one session and the cost can be reduced.
Methods: A 2.5-cm diameter full-thickness chondral defect was created in the knees of five groups of sheep. In one group, some of the chondral tissues obtained from the creation of the defect were diced into small pieces and were placed into the defect and were covered with a collagen membrane (MIV group). In the other group, the collagen membrane was soaked in collagenase prior to usage. In the next group, the collagen membrane was soaked in both collagenase and growth factors. Matrix-induced autologous chondrocyte implantation (MACI) was applied to another group in two sessions, and the last group was left untreated. After 15 weeks of follow-up, repair tissues were compared macroscopically, histomorphometrically, and biochemically for tissue concentrations of glycosaminoglycan and type II collagen.
Results: MACI and MIV groups demonstrated better healing than others and were similar. Addition of collagenase or growth factors did not improve the results. Addition of collagenase did not have detrimental effect on the surrounding cartilage.
Conclusions: With the described method, it is possible to obtain comparable results with MACI. Further studies are also needed to see if it works similarly in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941486 | PMC |
http://dx.doi.org/10.1186/s13018-018-0823-0 | DOI Listing |
Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, PR China. Electronic address:
The insolubility of eggshell membrane (ESM) limits it application. This study utilized a green process subcritical water (SW), to prepare soluble ESM and compared it with acid hydrolysis. The effect of SW temperature on the yields of total protein, free amino acids, and glycosaminoglycan in the hydrolysate was investigated.
View Article and Find Full Text PDFDevelopment
January 2025
School of Science, Technische Universität Dresden, 01062 Dresden, Germany.
The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.
View Article and Find Full Text PDFFolia Morphol (Warsz)
January 2025
Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland.
The correct function of the upper limb depends on the cooperation and coordination of the muscular and skeletal systems as well as the connective tissue elements present in it. Connective tissue forms fascia, connective tissue membranes and ligaments. Connective tissue mostly develops from the mesenchyme.
View Article and Find Full Text PDFCell Tissue Bank
January 2025
Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka, 1349, Bangladesh.
In the quest for an ideal wound healing material, human amniotic membrane (AM), tilapia skin collagen (TSC), and Centella asiatica (CA) have been studied separately for their healing potential. In this study, we formulated AM, TSC, and CA gel and studied their competency and wound healing efficacy in vivo. Gel was formulated using AM, TSC, CA, Carbopol 934, acrylic acid, glycerine, and triethanolamine and physicochemical properties e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!