Background: Infantile neuroaxonal dystrophy (INAD) is a rare hereditary neurological disorder caused by mutations in PLA2G6. The disease commonly affects children below 3 years of age and presents with delay in motor skills, optic atrophy and progressive spastic tetraparesis. Studies of INAD in Africa are extremely rare, and genetic studies from Sub Saharan Africa are almost non-existent.

Case Presentation: Two Sudanese siblings presented, at ages 18 and 24 months, with regression in both motor milestones and speech development and hyper-reflexia. Brain MRI showed bilateral and symmetrical T2/FLAIR hyperintense signal changes in periventricular areas and basal ganglia and mild cerebellar atrophy. Whole exome sequencing with confirmatory Sanger sequencing were performed for the two patients and healthy family members. A novel variant (NM_003560.2 c.1427 + 2 T > C) acting on a splice donor site and predicted to lead to skipping of exon 10 was found in PLA2G6. It was found in a homozygous state in the two patients and homozygous reference or heterozygous in five healthy family members.

Conclusion: This variant has one very strong (loss of function mutation) and three supporting evidences for its pathogenicity (segregation with the disease, multiple computational evidence and specific patients' phenotype). Therefore this variant can be currently annotated as "pathogenic". This is the first study to report mutations in PLA2G6 gene in patients from Sudan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941609PMC
http://dx.doi.org/10.1186/s12881-018-0592-yDOI Listing

Publication Analysis

Top Keywords

pla2g6 gene
8
infantile neuroaxonal
8
neuroaxonal dystrophy
8
mutations pla2g6
8
healthy family
8
case report
4
report novel
4
novel homozygous
4
homozygous splice
4
splice site
4

Similar Publications

Association of Novel Pathogenic Variant (p. Ile366Asn) in Gene with Infantile Neuroaxonal Dystrophy.

Int J Mol Sci

January 2025

Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.

A couple presented to the office with an apparently healthy infant for a thorough clinical assessment, as they had previously lost two male children to a neurodegenerative disorder. They also reported the death of a male cousin abroad with a comparable condition. We aimed to evaluate a novel coding pathogenic variant c.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to identify genomic variations linked to dystonia in the Asian Indian population using next-generation sequencing.
  • A total of 745 individuals were enrolled, and whole exome sequencing (WES) was performed on 267 patients, revealing pathogenic variants in 20.2% of them, including 14 novel variants.
  • The gene THAP1 was found to be the most common associated with dystonia, and factors like multifocal/generalized distribution and family history increased the likelihood of finding positive results from WES.
View Article and Find Full Text PDF

Human genetics identify convergent signals in mitochondrial LACTB-mediated lipid metabolism in cardiovascular-kidney-metabolic syndrome.

Cell Metab

January 2025

Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Penn/CHOP Kidney Innovation Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Article Synopsis
  • Researchers discovered that the beta-lactamase gene (LACTB) is linked to kidney dysfunction and high lipid levels, which are vital aspects of cardiovascular-kidney-metabolic syndrome.
  • In experiments, mice lacking LACTB showed symptoms of impaired glucose tolerance and higher lipid levels, while overexpressing LACTB in specific kidney tubules provided protection against kidney damage.
  • The study reveals that LACTB acts as a mitochondrial protease that activates another gene, PLA2G6, which is important for regulating lipid metabolism and may serve as a target for treating metabolic disorders related to kidney health.
View Article and Find Full Text PDF

Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. However, the genetic underpinnings of RBC metabolic heterogeneity and extravascular hemolysis at population scale are incompletely understood. Based on the breeding of 8 founder strains with extreme genetic diversity, the Jackson laboratory diversity outbred population can capture the impact of genetic heterogeneity in like fashion to population-based studies.

View Article and Find Full Text PDF
Article Synopsis
  • Calcium-independent phospholipase A2γ (iPLA2γ) plays a role in kidney health, with its deletion in mice leading to mitochondrial issues and heightened autophagy in kidney cells, yet not causing albuminuria directly.
  • In a study involving diabetic models, iPLA2γ knockout (KO) mice did not show the expected increase in albuminuria compared to control mice, even with similar hyperglycemia levels.
  • The findings suggest that the absence of iPLA2γ offers protection against chronic kidney damage during diabetes, linked to enhanced autophagy in the glomeruli.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!