Background: Although sleep deprivation is associated with neurobehavioral impairment that may underlie significant risks to performance and safety, there is no reliable biomarker test to detect dangerous levels of impairment from sleep loss in humans. This study employs microarrays and bioinformatics analyses to explore candidate gene expression biomarkers associated with total sleep deprivation (TSD), and more specifically, the phenotype of neurobehavioral impairment from TSD. Healthy adult volunteers were recruited to a sleep laboratory for seven consecutive days (six nights). After two Baseline nights of 10 h time in bed, 11 subjects underwent an Experimental phase of 62 h of continuous wakefulness, followed by two Recovery nights of 10 h time in bed. Another six subjects underwent a well-rested Control condition of 10 h time in bed for all six nights. Blood was drawn for measuring gene expression on days two, four, and six at 4 h intervals from 08:00 to 20:00 h, corresponding to 12 timepoints across one Baseline, one Experimental, and one Recovery day.
Results: Altogether 212 genes changed expression in response to the TSD Treatment, with most genes exhibiting down-regulation during TSD. Also, 28 genes were associated with neurobehavioral impairment as measured by the Psychomotor Vigilance Test. The results support previous findings associating TSD with the immune response and ion signaling, and reveal novel candidate biomarkers such as the Speedy/RINGO family of cell cycle regulators.
Conclusions: This study serves as an important step toward understanding gene expression changes during sleep deprivation. In addition to exploring potential biomarkers for TSD, this report presents novel candidate biomarkers associated with lapses of attention during TSD. Although further work is required for biomarker validation, analysis of these genes may aid fundamental understanding of the impact of TSD on neurobehavioral performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941663 | PMC |
http://dx.doi.org/10.1186/s12864-018-4664-3 | DOI Listing |
Development
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.
View Article and Find Full Text PDFChem Biodivers
January 2025
Zhejiang University, Polytechnic Institute, 866 Yuhangtang Road, Hangzhou, CHINA.
Filamentous fungi are of great interest due to their powerful metabolic capabilities and potentials to produce abundant various secondary metabolites as natural products (NPs), some of which have been developed into pharmaceuticals. Furthermore, high-throughput genome sequencing has revealed tremendous cryptic NPs underexplored. Based on the development of in silico genome mining, various techniques have been introduced to rationally modify filamentous fungi,awakening the silent biosynthetic gene clusters (BGCs) and visualizing the NPs originally cryptic.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFJ Virol
January 2025
Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India.
Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!