We report on the use of a laser-direct write (LDW) technique that allows the fabrication of lateral flow devices with enhanced sensitivity and limit of detection. This manufacturing technique comprises the dispensing of a liquid photopolymer at specific regions of a nitrocellulose membrane and its subsequent photopolymerisation to create impermeable walls inside the volume of the membrane. These polymerised structures are intentionally designed to create fluidic channels which are constricted over a specific length that spans the test zone within which the sample interacts with pre-deposited reagents. Experiments were conducted to show how these constrictions alter the fluid flow rate and the test zone area within the constricted channel geometries. The slower flow rate and smaller test zone area result in the increased sensitivity and lowered limit of detection for these devices. We have quantified these via the improved performance of a C-Reactive Protein (CRP) sandwich assay on our lateral flow devices with constricted flow paths which demonstrate an improvement in its sensitivity by 62x and in its limit of detection by 30x when compared to a standard lateral flow CRP device.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.05.001DOI Listing

Publication Analysis

Top Keywords

lateral flow
16
flow devices
12
limit detection
12
test zone
12
flow rate
8
zone area
8
flow
7
improved sensitivity
4
sensitivity limit-of-detection
4
lateral
4

Similar Publications

Rapid detection of by recombinase-aided amplification combined with the CRISPR/Cas12a system.

Front Cell Infect Microbiol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

() is one of the primary agents involved in porcine respiratory disease complex, and circulates in the swine industry worldwide. The prevention and control of is complicated. Thus, a recombinase-aided amplification (RAA) assay coupled with the clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas12a system was established for the detection of .

View Article and Find Full Text PDF

Development of point-of-care tests for urinary bladder cancer - an historic review and view to future prospectives.

Urol Oncol

January 2025

Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.

Urine is an attractive biospecimen for noninvasive tests to facilitate bladder tumor diagnostics. Three different point-of-care (POC) tests based on lateral flow immunoassays (LFAs) are currently commercially available: UBC® Rapid Test, BTA stat®, and NMP22 BladderChek. The present review discusses these different tests based on their performance, clinical utility and the nature of the respective analytes.

View Article and Find Full Text PDF

Development of lateral flow immunochromatographic assay with Anti-Pythium insidiosum antibodies for point-of-care testing of vascular pythiosis.

Sci Rep

January 2025

Center of Excellence for Antimicrobial Resistance and Stewardship, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.

The pathogenic oomycete Pythium insidiosum causes a fatal infectious illness known as pythiosis, impacting humans and certain animals in numerous countries in the tropics and subtropics. Delayed diagnosis is a primary factor contributing to the heightened morbidity and mortality associated with the disease. Several new serodiagnostic methods have been developed to improve the identification of pythiosis.

View Article and Find Full Text PDF

Tuberculosis (TB) is the second deadliest infectious disease worldwide. Current TB diagnostics utilize sputum samples, which are difficult to obtain, and sample processing is time-consuming and difficult. This study developed an integrated diagnostic platform for the rapid visual detection of Mycobacterium tuberculosis (Mtb) in breath samples at the point-of-care (POC), especially in resource-limited settings.

View Article and Find Full Text PDF

Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel, causing a shift to fatty acids to sustain energy production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!