Objective: Influenza A(H7N9) virus is known for its high pathogenicity in human. A family cluster of influenza A(H7N9) virus infection was identified in Suzhou, China. This study aimed to investigate the possibility of human-to-human transmission of the virus and examine the virologic features of this family cluster.

Methods: The clinical and epidemiologic data of two patients in the family cluster of influenza A(H7N9) virus infection were collected. Viral RNA in samples derived from the two patients, their close contacts, and the environments with likely influenza A(H7N9) virus transmission were tested by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay. Hemagglutination inhibition (HI) assay was used to detect virus-specific antibodies. Genetic sequencing and phylogenetic analysis were also performed.

Results: The index patient (Case 1), a 66-year old man, was virologically diagnosed with influenza A(H7N9) virus infection 12days after experiencing influenza-like symptoms, then died of multi-organ failure. His 39-year old daughter (Case 2), denying any other exposure to influenza A(H7N9) virus, became infected with influenza A(H7N9) virus following taking care of her father during his illness. Sequencing viral genomes isolated from the two patients showed nearly identical nucleotide sequence, and genetically resembled the viral genome isolated from a chicken in the wet market where the index patient once visited. All three influenza A(H7N9) viruses shared S138A, G186V, Q226L mutations in HA (H3) protein and a single basic amino acid (PEIPKGR↓G) at the cleavage site.

Conclusions: Human-to-human transmission of influenza A(H7N9) virus most likely occurred in this household. The three-amino-acid mutations in HA protein were discovered in this study, which might have increased the binding affinity of influenza A(H7N9) virus to the receptor on trachea epithelial cells to facilitate viral transmission among humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijid.2018.04.4322DOI Listing

Publication Analysis

Top Keywords

influenza ah7n9
44
ah7n9 virus
36
family cluster
12
virus infection
12
influenza
11
ah7n9
10
virus
10
cluster influenza
8
human-to-human transmission
8
mutations protein
8

Similar Publications

Introduction: Pandemic influenza vaccine development focuses on the hemagglutinin (HA) antigen for potency and immunogenicity. Antibody responses targeting the neuraminidase (NA) antigen, or the HA stalk domain have been implicated in protection against influenza. Responses to the NA and HA-stalk domain following pandemic inactivated influenza are not well characterized in humans.

View Article and Find Full Text PDF

Pandemic risk characterisation of zoonotic influenza A viruses using the Tool for Influenza Pandemic Risk Assessment (TIPRA).

Lancet Microbe

October 2024

Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland. Electronic address:

A systematic risk assessment approach is essential for evaluating the relative risk of influenza A viruses (IAVs) with pandemic potential. To achieve this, the Tool for Influenza Pandemic Risk Assessment (TIPRA) was developed under the Global Influenza Programme of WHO. Since its release in 2016 and update in 2020, TIPRA has been used to assess the pandemic risk of 11 zoonotic IAVs across ten evaluation rounds.

View Article and Find Full Text PDF

High expression of oleoyl-ACP hydrolase underpins life-threatening respiratory viral diseases.

Cell

August 2024

Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, USA. Electronic address:

Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death.

View Article and Find Full Text PDF

A decavalent composite mRNA vaccine against both influenza and COVID-19.

mBio

September 2024

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

The COVID-19 pandemic caused by SARS-CoV-2 has had a persistent and significant impact on global public health for 4 years. Recently, there has been a resurgence of seasonal influenza transmission worldwide. The co-circulation of SARS-CoV-2 and seasonal influenza viruses results in a dual burden on communities.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on the evolution and characteristics of H7N9 avian influenza viruses in China from 2021 to 2023.
  • Researchers analyzed the hemagglutinin gene over the past decade to understand the virus's evolutionary changes.
  • Findings revealed recent antigenic drift, highlighting the need for updates in the H7N9 vaccine and strategies for disease prevention and control.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!