The Drosophila light-activated TRP and TRPL channels - Targets of the phosphoinositide signaling cascade.

Prog Retin Eye Res

Departments of Medical Neurobiology, The Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine of the Hebrew University, Jerusalem 91120, Israel. Electronic address:

Published: September 2018

The Drosophila light-activated Transient Receptor Potential (TRP) channel is the founding member of a large and diverse family of channel proteins. It is now established that TRP channels are evolutionarily conserved and are found in many organisms and tissues. This review outlines the progress made in our understanding of Drosophila phototransduction with a focus on the light sensitive TRP channels. The visual system of Drosophila has remarkable capabilities, such as single photon sensitivity, low dark noise, wide dynamic range of responses to changing ambient light intensities and an unusually wide range of frequency responses to modulated lights. These capabilities are obtained by a unique cellular structure called rhabdomere, which contains ∼40,000 microvilli, harboring a sophisticated molecular machinery performing phototransduction. The phototransduction cascade was discovered mainly by using the power of Drosophila molecular genetics and the ability to generate mutations in virtually every gene of the cascade. This allowed a detailed functional analysis and mechanistic description of the phototransduction cascade. Drosophila phototransduction has been a model system, instrumental for studying phosphoinositide signaling and its participation in TRP channel activation. Accordingly, the phosphoinositide signaling cascade activates the TRP/TRPL channels via Gq-protein-mediated PLCβ, while the gating mechanism of the channels following PLC activation is still under debate. Detailed studies of the single photon response (quantum bump) and the spontaneous dark bump has given important tools to investigate critical features of channel activation and regulation including: synchronization in channel activity, the existence of a Ca regulated threshold of channel activation, positive and negative feedback and refractory period in bump generation. We anticipate that studies in Drosophila photoreceptors will continue shed light on mechanisms that operate in mammalian TRP channels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.preteyeres.2018.05.001DOI Listing

Publication Analysis

Top Keywords

phosphoinositide signaling
12
trp channels
12
channel activation
12
drosophila light-activated
8
signaling cascade
8
cascade drosophila
8
trp channel
8
drosophila phototransduction
8
single photon
8
phototransduction cascade
8

Similar Publications

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

This study aims to investigate the mechanism of tanshinone Ⅱ_A(Tan Ⅱ_A) in protecting mice from diethylinitrosamine(DEN)/carbon tetrachloride(CCl_4)/ethanol(C_2H_5OH)-induced hepatocellular carcinoma(HCC) and HepG2 cells from hydrogen peroxide(H_2O_2)-induced oxidative damage via the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and nuclear factor E2-related factor 2(Nrf2)/heme oxygenase 1(HO-1) signaling pathways. Sixty male C57BL/6J mice were grouped as follows: control, model, low, medium, and high-dose(10, 20, 40 mg·kg~(-1), respectively) Tan Ⅱ_A, and colchicine(0.2 mg·kg~(-1)), with 10 mice in each group.

View Article and Find Full Text PDF

Preserving the balance of metabolic processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), is crucial for optimal vascular function and integrity. ECs are metabolically active and depend on aerobic glycolysis to efficiently produce energy for their essential functions, which include regulating vascular tone. Impaired EC metabolism is linked to endothelial damage, increased permeability and inflammation.

View Article and Find Full Text PDF

[Advances in the study of viruses inhibiting the production of advanced autophagy or interferon through Rubicon to achieve innate immune escape].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:

The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!