Currently, an increasing proportion of adolescent ketamine users simultaneously consume alcohol. However, the potential behavioural and neurological alterations induced by such a drug combination and the underlying mechanisms have not been systematically examined. Therefore, in the present study, the behavioural and morphological changes and the underlying mechanisms were studied in adolescent rats after repeated alcohol and/or ketamine treatment. This study provided the first evidence that co-administration of alcohol (2 and 4 g/kg, i.g.) in adolescent rats significantly potentiated the neurotoxic properties of repeated ketamine (30 mg/kg, i.p.) treatments over 14 days, manifesting as increased locomotor activity, stereotypic behaviour, ataxia and morphological changes. This potentiation was associated with the enhancement by alcohol of ketamine-induced glutamate (Glu) and dopamine (DA) release in the cortex and hippocampus. Further mechanistic study demonstrated that alcohol potentiated ketamine-induced neurotoxicity through down-regulation of Akt (a serine/threonine kinase or protein kinase, PKB), protein kinase A (PKA), calmodulin-dependent kinase IV (CaMK-IV)-mediated cyclic AMP-responsive element binding protein (CREB) pathways and induction of neuronal apoptosis in the cortex and hippocampus of the adolescent rats. As this study provides strong evidence that repeated alcohol and ketamine co-exposure may cause serious neurotoxicity, attention needs to be drawn to the potential risk of this consumption behaviour, especially for adolescents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2018.05.003DOI Listing

Publication Analysis

Top Keywords

adolescent rats
16
underlying mechanisms
8
morphological changes
8
repeated alcohol
8
cortex hippocampus
8
protein kinase
8
alcohol
7
adolescent
5
alcohol aggravates
4
aggravates ketamine-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!