Altered gene expression pattern indicates the differential regulation of the immune response system as an important factor in cardiac aging.

Exp Gerontol

Department of Cardiac Surgery, Middle German Heart Centre at the University Hospital Halle (Saale), Halle (Saale), Germany; Department of Internal Medicine II, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.

Published: March 2019

Numerous changes occur in the old myocardium which finally cause lower cardiac output and, therefore, circulatory dysfunction. In order to identify an age-related gene expression pattern, we analyzed left ventricular myocardium of adult (6 months) and old (24 months) mice by use of whole genome expression arrays. About 2.3% of genes expressed above the median value of all genes were differentially expressed in old hearts. Nearly all of them were upregulated. After application of defined exclusion criteria, 98 genes were selected for a more detailed analysis. About one third of the 98 genes codes for factors involved in the immune reaction, such as chemokines (CCLs 6, 8, 9), proteins of the S100 family (S100s 4, 8, 9, 10, 11), complement components (C1qa, C1qb, C1qc, C3, C4b), bacteria/virus-induced genes (lysozyme 1/2, interferon-activated genes), and pro-inflammatory caspases (Casp1, Casp4, Casp12). Predominantly, genes coding for factors of the immune reaction were simultaneously upregulated in the kidneys and lungs of old mice, thereby emphasizing the pivotal role of immune cells in tissue aging. In conclusion, myocardial aging is mainly associated with an altered expression pattern of molecules involved in the immune reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2018.05.001DOI Listing

Publication Analysis

Top Keywords

expression pattern
12
immune reaction
12
gene expression
8
involved immune
8
genes
7
immune
5
altered gene
4
expression
4
pattern indicates
4
indicates differential
4

Similar Publications

Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective.

Clin Rev Allergy Immunol

January 2025

Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.

View Article and Find Full Text PDF

A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.

View Article and Find Full Text PDF

A pan-cancer analysis: predictive role of ZNF32 in cancer prognosis and immunotherapy response.

Discov Oncol

January 2025

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.

The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.

View Article and Find Full Text PDF

Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.

Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.

View Article and Find Full Text PDF

Recent barcoding technologies allow reconstructing lineage trees while capturing paired single-cell RNA-sequencing (scRNA-seq) data. Such datasets provide opportunities to compare gene expression memory maintenance through lineage branching and pinpoint critical genes in these processes. Here we develop Permutation, Optimization, and Representation learning based single Cell gene Expression and Lineage ANalysis (PORCELAN) to identify lineage-informative genes or subtrees where lineage and expression are tightly coupled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!