Tyrosine sulfation is a crucial post-translational modification for certain antibodies that neutralize HIV. One of the most neutralizing sulfated anti-HIV antibodies, E51, contains a region in its VCDR3 loop with five tyrosine (Tyr) residues, which are hypothesized to be partially or fully sulfated to bind to HIV's gp120 coat protein. However, the gp120-binding contribution of each sulfate or more complex sulfation patterns is unknown. In addition, natural sulfation of Tyr-rich loops usually yields a mixture of multiply sulfated products, complicating attempts to dissect the function of individual E51 sulfoforms with unique sulfation patterns. Here, we use an upgraded expanded genetic code for sulfotyrosine (sY) to express homogeneous E51 sulfoforms containing up to five sulfates. Through characterization of the 32 possible sulfoforms of E51, we show that only a subset of E51 sulfoforms with two, three, or four sYs bind to gp120 with potency similar to that of post-translationally sulfated E51, which we find is a mixture of sulfoforms. We show that sulfation of Tyr100i is necessary for gp120 binding whereas sulfation of Tyr100n is detrimental to binding. These results reveal that gp120 binding by E51 requires very specific sulfation patterns and should aid in the further design of sulfated E51-based peptides and immunoadhesins against HIV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.8b00374 | DOI Listing |
FEBS J
January 2025
Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
Vesicle trafficking is pivotal in heparan sulfate (HS) biosynthesis, influencing its spatial and temporal regulation within distinct Golgi compartments. This regulation modulates the sulfation pattern of HS, which is crucial for governing various biological processes. Here, we investigate the effects of silencing Rab1A and Rab2A expression on the localisation of 3-O-sulfotransferase-5 (3OST5) within Golgi compartments and subsequent alterations in HS structure and levels.
View Article and Find Full Text PDFElectrophoresis
January 2025
Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Computer simulation was utilized to characterize the electrophoretic processes occurring during the enantioselective capillary electrophoresis-mass spectrometry (CE-MS) analysis of ketamine, norketamine, and hydroxynorketamine in a system with partial filling of the capillary with 19 mM (equals 5%) of highly sulfated γ-cyclodextrin (HS-γ-CD) and analyte detection on the cathodic side. Provided that the sample is applied without or with a small amount of the chiral selector, analytes become quickly focused and separated in the thereby formed HS-γ-CD gradient at the cathodic end of the sample compartment. This gradient broadens with time, remains stationary, and gradually reduces its span from the lower side due to diffusion such that analytes with high affinity to the anionic selector become released onto the other side of the focusing gradient where anionic migration and defocusing occur concomitantly.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico.
Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake.
View Article and Find Full Text PDFMolecules
December 2024
Laboratory of Electrochemistry, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland.
Brochantite was precipitated using stoichiometric amounts of CuSO and NaOH and characterized by scanning electron microscopy, specific surface area, thermogravimetric analysis, and zeta potential. Brochantite can be converted into paratacamite, basic copper bromide, and copper phthalate by shaking the powder with solutions containing excess corresponding anions. By contrast, attempts to convert brochantite into basic iodide, acetate, nitrate, or rhodanide in a similar way failed, that is, the powder after shaking with solutions containing excess corresponding anions still showed the powder X-ray diffraction pattern of brochantite.
View Article and Find Full Text PDFChem Phys Lipids
January 2025
College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, No.81, Meishan Road, Shushan District, Hefei City, 230032 China. Electronic address:
Dental fluorosis, as a common chronic fluoride toxicity oral disease, is mainly caused by long-term excessive intake of fluoride, which seriously affects the aesthetics and function of patients' teeth. In recent years, with the rapid development of metabolomics technology, lipidomics, as an important means to study the changes in lipid metabolism in organisms, has shown great potential in revealing the mechanisms of disease development. As a major component of cell membranes and a signaling molecule, metabolic disorders of lipids are closely related to a variety of diseases, but the specific mechanism of action in dental fluorosis is still unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!