Sensory responses to courtship signals can be altered by reproductive hormones. In seasonally-breeding female songbirds, for example, sound-induced immediate early gene expression in the auditory pathway is selective for male song over behaviourally irrelevant sounds only when plasma estradiol reaches breeding-like levels. This selectivity has been hypothesized to be mediated by release of monoaminergic neuromodulators in the auditory pathway. We previously showed that in oestrogen-primed female white-throated sparrows, exposure to male song induced dopamine and serotonin release in auditory regions. In order to mediate hormone-dependent selectivity, this release must be (1) selective for song and (2) modulated by endocrine state. Therefore, in the current study we addressed both questions by conducting playbacks of song or a control sound to females in a breeding-like or non-breeding endocrine state. We then used high performance liquid chromatography to measure turnover of dopamine, norepinephrine, and serotonin in the auditory midbrain and forebrain. We found that sound-induced turnover of dopamine and serotonin did in fact depend on endocrine state; hearing sound increased turnover in the auditory forebrain only in the birds in a breeding-like endocrine state. Contrary to our expectations, these increases occurred in response to either song or artificial tones; in other words, they were not selective for song. The selectivity of sound-induced monoamine release was thus strikingly different from that of immediate early gene responses described in previous studies. We did, however, find that constitutive monoamine release was altered by endocrine state; whether the birds heard sound or not, turnover of serotonin in the auditory forebrain was higher in a breeding-like state than in a non-breeding endocrine state. Our results suggest that dopaminergic and serotonergic responses to song and other sounds, as well as serotonergic tone in auditory areas, could be seasonally modulated. This article is protected by copyright. All rights reserved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6365208 | PMC |
http://dx.doi.org/10.1111/jne.12606 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Department of Psychology, University of Miami, Coral Gables, FL, United States.
The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Gastrointestinal Surgery, General Surgery, Xichang People's Hospital, Xichang, China.
Thyroid function is closely linked to circadian rhythms, but the relationship between the frequency of night eating and thyroid function remains unclear. Our study aimed to investigate the association between night eating frequency and its impact on thyroid function and sensitivity. This study included 6093 participants from the U.
View Article and Find Full Text PDFPhagocytic clearance of apoptotic cancer cells (efferocytosis) by tumor-associated macrophages (TAMs) contributes in a substantial manner to the establishment of an immunosuppressive tumor microenvironment. This puts in context our observation that the female steroid hormone 17β-estradiol (E2) facilitates tumor immune resistance through cancer cell extrinsic Estrogen Receptor (ERalpha;) signaling in TAMs. Notable was the finding that E2 induces the expression of CX3CR1 in TAMs to enable efferocytosis of apoptotic cancer cells which results in the suppression of type I interferon (IFN) signaling.
View Article and Find Full Text PDFPurpose: The development of endocrine resistance remains a significant challenge in the clinical management of estrogen receptor-positive ( ) breast cancer. Metabolic reprogramming is a prominent component of endocrine resistance and a potential therapeutic intervention point. However, a limited understanding of which metabolic changes are conserved across the heterogeneous landscape of ER+ breast cancer or how metabolic changes factor into ER DNA binding patterns hinder our ability to target metabolic adaptation as a treatment strategy.
View Article and Find Full Text PDFPLoS One
January 2025
Endocrine Unit, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
Gestational Weight Gain (GWG) modulates pregnancy outcomes and long-term offspring metabolic health. The 2009 Institute of Medicine (IOM) GWG recommendations have largely been validated in Caucasian and mono-ethnic East Asian cohorts. Asians are at higher metabolic risk at a lower body mass index (BMI), and this has prompted the World Health Organization (WHO) to identify lower BMI cut-offs for risk evaluation amongst Asians.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!