A novel α-galactosidase of glycoside hydrolase family 36 was cloned from Bacillus coagulans, overexpressed in Escherichia coli, and characterized. The purified enzyme Aga-BC7050 was 85 kDa according to SDS-PAGE and 168 kDa according to gel filtration, indicating that its native structure is a dimer. With p-nitrophenyl-α-d- galactopyranoside (pNPGal) as the substrate, optimal temperature and pH were 55 °C and 6.0, respectively. At 60 °C for 30 min, it retained > 50% of its activity. It was stable at pH 5.0-10.0, and showed remarkable resistance to proteinase K, subtilisin A, α-chymotrypsin, and trypsin. Its activity was not inhibited by glucose, sucrose, xylose, or fructose, but was slightly inhibited at galactose concentrations up to 100 mM. Aga-BC7050 was highly active toward pNPGal, melibiose, raffinose, and stachyose. It completely hydrolyzed melibiose, raffinose, and stachyose in < 30 min. These characteristics suggest that Aga-BC7050 could be used in feed and food industries and sugar processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940202PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197067PLOS

Publication Analysis

Top Keywords

novel α-galactosidase
8
bacillus coagulans
8
melibiose raffinose
8
raffinose stachyose
8
α-galactosidase thermophilic
4
thermophilic probiotic
4
probiotic bacillus
4
coagulans remarkable
4
remarkable protease-resistance
4
protease-resistance high
4

Similar Publications

Objective: Ankle osteoarthritis is a debilitating condition that significantly impairs patients' quality of life. Platelet-rich plasma has emerged as a novel cellular therapy in clinical practice. This study evaluates the clinical efficacy of platelet-rich plasma (PRP) after intervention in ankle disorders, so as to provide strong evidence in support of clinical treatment.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.

View Article and Find Full Text PDF

Molecular dependencies and genomic consequences of a global DNA damage tolerance defect.

Genome Biol

December 2024

Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

Background: DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. In mammalian cells, DDT is regulated by two independent pathways, controlled by the polymerase REV1 and ubiquitinated PCNA, respectively.

Results: To determine the molecular and genomic impact of a global DDT defect, we studied Pcna;Rev1 compound mutants in mouse cells.

View Article and Find Full Text PDF

Infertility is a prevalent problem among 10% of people within their reproductive years. Sometimes, even advanced treatment options like assisted reproduction technology have the potential to result in failed implantation. Because of the expected changes in gene expression during both in vitro and in vivo fertilization processes, these methods of assisting fertility have also been associated with undesirable pregnancy outcomes related to infertility.

View Article and Find Full Text PDF

Background: Pancreatic cancer (PC) is a lethal malignancy characterized by poor prognosis and high mortality. We found the highly expressed RNA-binding motif protein 47 (RBM47) in PC progression. The RBM47 expression was negatively correlated with natural killer (NK) cell infiltrate in PC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!