Mesoporous bioactive glass (BG) nanoparticles based in the system: SiO-PO-CaO-MnO were synthesized via a modified Stöber process at various concentrations of Mn (0-7 mol %). The synthesized manganese-doped BG nanoparticles were characterized in terms of morphology, composition, in vitro bioactivity and antibacterial activity. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis confirmed that the particles had spherical morphology (mean particle size: 110 nm) with disordered mesoporous structure. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of Mn, Ca, Si and P in the synthesized Mn-doped BG particles. Moreover, X-ray diffraction (XRD) analysis showed that Mn has been incorporated in the amorphous silica network (bioactive glass). Moreover, it was found that manganese-doped BG particles form apatite crystals upon immersion in simulated body fluid (SBF). Inductively coupled plasma atomic emission spectroscopy (ICP-OES) measurements confirmed that Mn is released in a sustained manner, which provided antibacterial effect against Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus. The results indicate that the incorporation of Mn in the bioactive glass network is an effective strategy to develop novel multifunctional BG nanoparticles for bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-018-6070-4 | DOI Listing |
Polymers (Basel)
January 2025
Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Center for Translational Research on Autoimmune and Allergic Diseases, Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy.
In the original publication [...
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
This study evaluated the osteogenic potential of the bioactive glasses SinGlass (45S5) and SinGlass High (F18) in regenerating critical bone defects in rat calvaria. Both biomaterials promoted new bone formation around the particles, with the SinGlass High (F18) group exhibiting a higher rate of bone maturation. Histomorphological and birefringence analyses revealed better organization of the newly formed bone in the biomaterial-treated groups, and immunohistochemistry indicated the expression of osteogenic markers such as osteocalcin, immunostaining for bone morphogenetic protein 2 (BMP 2), and immunostaining for bone morphogenetic protein 4 (BMP 4).
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
Macrophage metabolism is closely linked to their phenotype and function, which is why there is growing interest in studying the metabolic reprogramming of macrophages. Bioactive glass (BG) S53P4 is a bioactive material used especially in bone applications. Additionally, BG S53P4 has been shown to affect macrophages, but the mechanisms through which the possible immunomodulatory effects are conveyed remain unclear.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea.
To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol-gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional melt-quenched BAG (BAG45) incorporated into dentin adhesive to assess their remineralization and mechanical properties. The BAGs were characterized by using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy for surface morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!