This research was conducted to unravel the variation of oxygen consumption rate during different developmental stages and the effects of different ecological factors on embryonic oxygen consumption rate of Sepia pharaonis. The oxygen consumption rates were measured at twelve deve-lopmental stages by the sealed volumetric flasks, and four embryonic developmental periods (oosperm, gastrula, the formation of organization, endoskeleton) were selected under various ecological conditions, such as salinity (21, 24, 27, 30, 33), water temperature (18, 21, 24, 27, 30 ℃) and pH (7.0, 7.5, 8.0, 8.5, 9.0). The results showed that the oxygen consumption rate rose along with the developmental progress, and distinctly differed from each other. The oxygen consumption rate was 0.082 mg·(100 eggs)·h during oosperm period, and rose to 0.279 mg·(100 eggs)·h during gastrula period, which was significantly higher than that of blastula period. Finally, the oxygen consumption rate rose to 1.367 mg·(100 eggs)·h during hatching period. The salinity showed a significant effect on oxygen consumption rate during the formation of organization and endoskeleton formation stage (P<0.05), but no significant effect during oosperm and gastrula periods (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of salinity, and reached the highest values [0.082, 0.200, 0.768 and 1.301 mg·(100 eggs)·h, respectively] at salinity 30. The water temperature had a significant effect on the embryo oxygen consumption rates of gastrula, and the formation of organization and endoskeleton formation stage (P<0.05), with the exception of oosperm (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of temperature, and reached the highest values at 27 ℃ [0.082, 0.286, 0.806 and 1.338 mg·(100 eggs)·h, respectively]. The pH had no significant effect on the oxygen consumption rates of four embryonic stages (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of pH. The oxygen consumption rates of gastrula, the formation of organization, endoskeleton reached the according highest values [0.281, 0.799 and 1.130 mg·(100 eggs)·h] at pH 8.5, but that during oosperm period occurred at pH 8.0 [0.116 mg·(100 eggs)·h].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201607.013 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Electrochemical oxidation via in situ-generated reactive oxygen species (ROS) is effective for the mineralization of refractory organic pollutants. However, the oxidation performance is usually limited by the low yield and utilization efficiency of ROS. Herein, a B/N-doped diamond (BND) flow-through electrode with enhanced SO/OH generation and utilization was designed for electrochemical oxidation of organic pollutants in sulfate solution.
View Article and Find Full Text PDFLimnology (Tokyo)
July 2024
Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel.
Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy.
Introduction: Endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) modulate a plethora of physiological processes for the maintenance of homeostasis in different cellular subsets at both intra and extracellular level.
Materials And Methods: In this frame, the extracellular supplementation of recombinant human (rh) ERAP1 and ERAP2 (300 ng/ml) was used to mimic the effect of stressor-induced secretion of ERAPs on neutrophils isolated from 5 healthy subjects. In these cells following 3 h or 24 h rhERAP stimulation by Western Blot, RT-qPCR, Elisa, Confocal microscopy, transwell migration assay, Oxygraphy and Flow Cytometry we assessed: i) rhERAP internalization; ii) activation; iii) migration; iv) oxygen consumption rate; v) reactive oxygen species (ROS) accumulation; granule release; vi) phagocytosis; and vii) autophagy.
Front Endocrinol (Lausanne)
January 2025
Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.
Unlabelled: The prevalence of obesity is increasing at an alarming rate in industrialized countries. Obesity is a systemic disease that causes not only macroscopic alterations, but also mitochondrial dysfunction. Laparoscopic sleeve gastrectomy (LSG) poses a potential therapeutic option for patients with severe obesity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran.
Heavy metals (HMs) may cause the generation of reactive oxygen species (ROS), which results in oxidative stress and eventually leads to an increase in cardiovascular diseases (CVD). The Hoveyzeh Cohort Study Center provided clinical data for cardiovascular cases. The collection of samples was done randomly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!