Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake (). Specifically, we: (1) identified the current range and suitable environment of in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935076 | PMC |
http://dx.doi.org/10.7717/peerj.4647 | DOI Listing |
Plant Physiol Biochem
January 2025
Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil.
Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.
View Article and Find Full Text PDFThe Canadian Genomics Research and Development Initiative for Antimicrobial Resistance (GRDI-AMR) uses a genomics-based approach to understand how health care, food production and the environment contribute to the development of antimicrobial resistance. Integrating genomics contextual data streams across the One Health continuum is challenging because of the diversity in data scope, content and structure. To better enable data harmonization for analyses, a contextual data standard was developed.
View Article and Find Full Text PDFJ Econ Entomol
January 2025
Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou, China.
The Anoplophora chinensis (Coleoptera: Cerambycidae) (Forster), a serious phytophagous pest threatening Castanea mollissima Blume and Castanea seguinii Dode, poses risks of ecological imbalance, significant economic loss, and increased management difficulties if not properly controlled. This study employs optimized MaxEnt models to analyze the potential distribution areas of A. chinensis and its host plants under current and future climate conditions, identifying their movement pathways and relative dynamics.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Life and Consumer Sciences, University of South Africa, Johannesburg, South Africa.
Exploring drought dynamics has become urgent due to unprecedented climate change. Projections indicate that drought events will become increasingly widespread globally, posing a significant threat to the sustainability of the agricultural sector. This growing challenge has resulted in heightened interest in understanding drought dynamics and their impacts on agriculture.
View Article and Find Full Text PDFEcol Appl
January 2025
Parks Victoria, Marine and Coastal Science and Programs, Melbourne, Victoria, Australia.
Kelp forests serve as the foundation for shallow marine ecosystems in many temperate areas of the world but are under threat from various stressors, including climate change. To better manage these ecosystems now and into the future, understanding the impacts of climate change and identifying potential refuges will help to prioritize management actions. In this study, we use a long-term dataset of observations of kelp percentage cover for two dominant canopy-forming species off the coast of Victoria, Australia: Ecklonia radiata and Phyllospora comosa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!