Introduction: The repair of critical-sized defects (CSDs) are one of the most challenging orthopedic problems and the attempts for development of an ideal scaffold for treatment of large bone defect are ongoing.
Aim: The aim of this study was the effectiveness of hydroxyapatite-gelatin seeded with bone marrow stromal cells construct for healing of critical-sized bone defect in vivo.
Material And Methods: In this experimental study, the bone marrow stromal cells (BMSCs) were isolated by flushing method. For in vitro study, the cells were seeded on the scaffold and the cell viability as well as cytotoxicity were tested by MTT and LDH specific activity. The scaffold-cell construct was implanted into the critical-sized bone defect created in calvaria of Wistar male rats.15 rats were randomly divided into 3 groups (n=5), group 1 (control group): Injury without transplantation, group 2: implanted with hydroxyapatite-gelatin scaffold, group 3: hydroxyapatite-gelatin scaffold seeded with BMSCs. At different days post-implantation, the implanted site was collected and the bone healing was evaluated through H&E and Masson's Trichrome staining. ANOVA and paired t-test were used for data comparison and P<0.05 was considered significant.
Results: The results of MTT showed that the scaffold has no toxic effects on stromal cells. The first signs of ossification in hydroxyapatite-gelatin with BMSCs cells group appeared in the first week. However, in the fourth week, ossification was completed and the scaffold remaining was found as embedded islands in the spongy bone tissue. The greatest number of lymphocytes in the experimental group was observed after one week of planting scaffold.
Conclusion: Hydroxyapatite-gelatin scaffold coated with BMSCs cells has a potential role in the healing process of bone and would be a possible new therapeutic strategy to repair extensive bone lesions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911173 | PMC |
http://dx.doi.org/10.5455/medarh.2018.72.88-93 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.
View Article and Find Full Text PDFBlood
January 2025
Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.
View Article and Find Full Text PDFSci Immunol
January 2025
Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA.
Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFPLoS One
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!