Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications.

Molecules

Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Published: May 2018

The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100074PMC
http://dx.doi.org/10.3390/molecules23051100DOI Listing

Publication Analysis

Top Keywords

environmentally relevant
8
dehalogenases
4
dehalogenases improved
4
improved performance
4
performance potential
4
potential microbial
4
microbial dehalogenation
4
dehalogenation applications
4
applications variety
4
variety halogenated
4

Similar Publications

FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium.

PLoS One

January 2025

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.

The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.

View Article and Find Full Text PDF

Successful innovation requires employees to have intellectual and technical capacity. This study explored the effects of capacity building through educational learning, organizational training, and coaching on agricultural innovation. A sample of 142 operational-level agriculture scientists working within a public sector agricultural research organisation in Zimbabwe.

View Article and Find Full Text PDF

Background: Despite the rising prevalence of common mental symptoms, information is scarce on how health workers make sense of symptoms of mental disorders and perceive a link with inadequate water, sanitation, and hygiene (WASH) as work stressors to understand causation and produce useful knowledge for policy and professionals. Therefore, this study aimed to explore how health workers perceive the link between inadequate WASH and common mental symptoms (CMSs) at hospitals in central and southern Ethiopian regions.

Methods: We used an interpretive and descriptive phenomenological design guided by theoretical frameworks.

View Article and Find Full Text PDF

Background: Medications initially intended for diabetes treatment are now being used by other patients for weight loss. In the specialized literature, there are numerous meta-analyses investigating this aspect.

Areas Of Uncertainty: The authors aimed to explore whether the application of scientometric methods for literature review within meta-analyses could provide clear answers to specific research questions.

View Article and Find Full Text PDF

Radon Exposure and Gestational Diabetes.

JAMA Netw Open

January 2025

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.

Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.

Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.

Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!