Intra-molecular pathways of allosteric control in Hsp70s.

Philos Trans R Soc Lond B Biol Sci

Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany

Published: June 2018

The 70 kDa heat-shock protein (Hsp70) is undoubtedly the most versatile of all molecular chaperones. Hsp70 is involved in numerous cellular protein folding processes, accompanying proteins throughout their lifespan from de novo folding at the ribosome to degradation at the proteasome, surveilling protein stability and functionality. Several properties of this ATP-dependent chaperone constitute the molecular basis for this versatility. With its substrate binding domain (SBD), Hsp70 transiently interacts with a short degenerative linear sequence motif found practically in all proteins and, in addition, with more folded protein conformers. Binding to polypeptides is tightly regulated by ATP binding and hydrolysis in the nucleotide binding domain, which is coupled to the SBD by an intricate allosteric mechanism. Hsp70 is regulated by a host of J-cochaperones, which act as targeting factors by regulating the ATPase activity of Hsp70 in synergism with the substrates themselves, and by several families of nucleotide exchange factors. In this review, I focus on the allosteric mechanism, which allows Hsp70s to interact with substrates with ultrahigh affinity through a non-equilibrium mode of action and summarize what mutagenesis and structural studies have taught us about the pathways and mechanics of interdomain communication.This article is part of a discussion meeting issue 'Allostery and molecular machines'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941178PMC
http://dx.doi.org/10.1098/rstb.2017.0183DOI Listing

Publication Analysis

Top Keywords

binding domain
8
allosteric mechanism
8
hsp70
5
intra-molecular pathways
4
pathways allosteric
4
allosteric control
4
control hsp70s
4
hsp70s kda
4
kda heat-shock
4
protein
4

Similar Publications

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.

View Article and Find Full Text PDF

Validation of Machine Learning-assisted Screening of PKC Ligands: PKC Binding Affinity and Activation.

Biosci Biotechnol Biochem

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.

Protein kinase C (PKC) is a family of serine/threonine kinases, and PKC ligands have the potential to be therapeutic seeds for cancer, Alzheimer's disease, and human immunodeficiency virus infection. However, in addition to desired therapeutic effects, most PKC ligands also exhibit undesirable pro-inflammatory effects. The discovery of new scaffolds for PKC ligands is important for developing less inflammatory PKC ligands, such as bryostatins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!