Precise detection of de novo single nucleotide variants in human genomes.

Proc Natl Acad Sci U S A

Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, 62210 Morelos, México;

Published: May 2018

The precise determination of de novo genetic variants has enormous implications across different fields of biology and medicine, particularly personalized medicine. Currently, de novo variations are identified by mapping sample reads from a parent-offspring trio to a reference genome, allowing for a certain degree of differences. While widely used, this approach often introduces false-positive (FP) results due to misaligned reads and mischaracterized sequencing errors. In a previous study, we developed an alternative approach to accurately identify single nucleotide variants (SNVs) using only perfect matches. However, this approach could be applied only to haploid regions of the genome and was computationally intensive. In this study, we present a unique approach, coverage-based single nucleotide variant identification (COBASI), which allows the exploration of the entire genome using second-generation short sequence reads without extensive computing requirements. COBASI identifies SNVs using changes in coverage of exactly matching unique substrings, and is particularly suited for pinpointing de novo SNVs. Unlike other approaches that require population frequencies across hundreds of samples to filter out any methodological biases, COBASI can be applied to detect de novo SNVs within isolated families. We demonstrate this capability through extensive simulation studies and by studying a parent-offspring trio we sequenced using short reads. Experimental validation of all 58 candidate de novo SNVs and a selection of non-de novo SNVs found in the trio confirmed zero FP calls. COBASI is available as open source at https://github.com/Laura-Gomez/COBASI for any researcher to use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003530PMC
http://dx.doi.org/10.1073/pnas.1802244115DOI Listing

Publication Analysis

Top Keywords

novo snvs
16
single nucleotide
12
nucleotide variants
8
parent-offspring trio
8
novo
7
snvs
6
precise detection
4
detection novo
4
novo single
4
variants human
4

Similar Publications

Background: loss of function manifests across a broad spectrum of phenotypes, ranging from severe prenatal onset to asymptomatic cases. Bilateral periventricular nodular heterotopia (BPNH) consistently occurs in affected individuals. This retrospective study involving French patients with BPNH evaluates the prevalence of gene dosage anomalies and investigates genotype-phenotype correlations in a large cohort of French patients with BPNH.

View Article and Find Full Text PDF

Whole-genome sequencing identified ALK as a novel susceptible gene of Hirschsprung disease.

Arab J Gastroenterol

January 2025

Department of Pediatric Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430015, China.

Background And Study Aims: Hirschsprung disease (HD) is a complex developmental disease that resulted from impaired proliferation and migration of neural crest cells. Despite the genetic causation of enteric nervous system have been found to be responsible for part of HD cases, the genetic aetiology of most HD patients still needs to be explored.

Patients And Methods: Whole-genome sequencing and subsequent Sanger sequencing validation analysis were performed in 13 HD children and their unaffected parents.

View Article and Find Full Text PDF

Single-nucleotide variants (SNVs) are extremely prevalent in human cancers, although most of these remain clinically unactionable. The programmable RNA nuclease CRISPR-Cas13 has been deployed to specifically target oncogenic RNAs. However, silencing oncogenic SNVs with single-base precision remains extremely challenging due to the intrinsic mismatch tolerance of Cas13.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a well-characterized rare genetic connective tissue disorder. The features of MFS are primarily skeletal, ocular, and cardiovascular and are mainly caused by single-nucleotide variants (SNVs) in the FBN1 gene (MIM#134797) located on chromosome 15q21.1.

View Article and Find Full Text PDF

Trio-whole exome sequencing reveals the importance of de novo variants in children with intellectual disability and developmental delay.

Sci Rep

November 2024

Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China.

Understanding the genetic basis of developmental delay (DD) and intellectual disability (ID) remains a considerable clinical challenge. This study evaluated the clinical application of trio whole exome sequencing (WES) in children diagnosed with DD/ID. The study comprised 173 children with unexplained DD/ID.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!