Sulfur/ethylenediamine-functionalized reduced graphene oxide (S/EDA-RGO) nanocomposites were synthesized using a simple process. Ethylenediamine (EDA) was employed as both the reducing agent and the modification component. The morphologies, microstructures, and compositions of S/EDA-RGO composites were characterized by various detection techniques. The data indicated that EDA-RGO used as scaffolds for sulfur cathodes could enhance the electronic conductivity of the composites and strengthen the adsorbability of polysulfides. Meanwhile, the electrochemical properties of both S/EDA-RGO and S/RGO composites that were used as cathodes for lithium-sulfur (Li-S) batteries were investigated. The initial discharge capacity of S/EDA-RGO composites reached 1240 mAh g, with reversible capacity being maintained at 714 mAh g after 100 cycles. The improvement in cycling stability of S/EDA-RGO composites was further verified at different current rates. These findings demonstrated that proper surface modification of RGO by EDA reducing agent might improve the electrochemical performances of Li⁻S batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977317PMC
http://dx.doi.org/10.3390/nano8050303DOI Listing

Publication Analysis

Top Keywords

s/eda-rgo composites
12
sulfur/ethylenediamine-functionalized reduced
8
reduced graphene
8
graphene oxide
8
reducing agent
8
s/eda-rgo
5
composites
5
novel sulfur/ethylenediamine-functionalized
4
oxide composite
4
composite cathode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!