The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg₂Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978108 | PMC |
http://dx.doi.org/10.3390/ma11050731 | DOI Listing |
Enzyme Microb Technol
January 2025
Dpt. Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
The enzyme-catalyzed synthesis of calcium phosphate is a promising method for producing calcium-based nanomaterials for biomedical applications. The purpose of this work was to determine the type of phosphate that forms when alkaline phosphatase catalyzes the reaction, and to identify the role of natural biopolymers in calcium phosphate formation. In this research, we analyzed calcium phosphates that were synthesized in the presence of alkaline phosphatase from either E.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Design and Automation, Vellore Institute of Technology, School of Mechanical Engineering, Vellore Institute of Technology, Thiruvalluvar Road, Katpadi, Vellore, Tamil Nadu, 632014, INDIA.
Calcium phosphate (CaP)-based bioscaffolds are used for bone tissue regeneration because of their physical and chemical resemblance to human bone. Calcium, phosphate, sodium, potassium, magnesium, and silicon are important components of human bone. The successful biomimicking of human bone characteristics involves incorporating all the human bone elements into the scaffold material.
View Article and Find Full Text PDFChem Biodivers
January 2025
Sari Agricultural Sciences and Natural Resources University, Rangeland Sciences, sari, IRAN, ISLAMIC REPUBLIC OF.
This study investigates the influence of environmental factors on the secondary metabolites of Stachyslavandulifolia Vahl., focusing on how soil properties, temperature, and precipitation affect the yield and chemical composition of its essential oils. The research was conducted in two domains within three rangelands in Mazandaran province, Iran.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Magnesium oxide (MgO) is known for its bioactivity and osteoconductivity when incorporated into biodegradable poly(lactic acid) (PLA), whereas the weak interfacial bonding between MgO microspheres (mMPs) and PLA often leads to suboptimal composite properties with uncontrollable functionality. Conjugation of mMPs with PLA may offer a good way to enhance their compatibility. In this study, we systematically investigated two grafting techniques, solution grafting (Sol) and melt grafting (Mel), to decorate poly (D-lactic acid) (PDLA) on mMPs pre-treated by prioritized hydration to obtain Sol MPs and Mel MPs, in order to optimize the grafting efficiency and improve their controllability in the properties including the crystal structure and surface morphology.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States.
Polyetheretherketone (PEEK) is a high-performance polymer material for developing varying orthopedic, spine, cranial, maxillofacial, and dental implants. Despite their commendable mechanical properties and biocompatibility, the major limitation of PEEK implants is their low affinity to osseointegrate with the neighboring bone. Over the last two decades, several efforts have been made to incorporate bioactive components such as bioceramic particles in PEEK to enhance its osseointegration capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!