Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States.

Sci Total Environ

USEPA, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States. Electronic address:

Published: April 2018

Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR). However, true values may be underestimated due to challenges involved in a multi-step viral concentration process and due to PCR inhibition. In this study, water samples were concentrated from 25 drinking water treatment plants (DWTPs) across the US to study the occurrence of enteric viruses in source water and removal after treatment. The five different types of viruses studied were adenovirus, norovirus GI, norovirus GII, enterovirus, and polyomavirus. Quantitative PCR was performed on all samples to determine presence or absence of these viruses in each sample. Ten DWTPs showed presence of one or more viruses in source water, with four DWTPs having treated drinking water testing positive. Furthermore, PCR inhibition was assessed for each sample using an exogenous amplification control, which indicated that all of the DWTP samples, including source and treated water samples, had some level of inhibition, confirming that inhibition plays an important role in PCR-based assessments of environmental samples. PCR inhibition measurements, viral recovery, and other assessments were incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075686PMC
http://dx.doi.org/10.1016/j.scitotenv.2017.10.267DOI Listing

Publication Analysis

Top Keywords

drinking water
16
water
13
pcr inhibition
12
viruses source
12
source water
12
treated water
12
water systems
8
water treatment
8
treatment plants
8
enteric viruses
8

Similar Publications

Background: Considering that peripheral blood biomarkers are prognostic predictors for several human tumors, this study aimed to comparatively analyze the association of hematological alterations with the incidence of epithelial dysplasia (ED) and oral squamous cell carcinoma (OSCC) in male and female mice treated with 4-nitroquinoline-N-oxide (4NQO) and ethanol (EtOH).

Methods: 120 C57Bl/6J mice (60 males and 60 females) were allocated to four groups (n = 15). They were treated firstly either with 5 mg/mL propylene glycol (PPG) or 100 μg/mL 4NQO in the drinking water for 10 weeks, followed by sterilized water (HO) or 8% EtOH (v/v) for 15 weeks, as follows: PPG/HO, PPG/EtOH, 4NQO/HO, and 4NQO/EtOH (CEUA-UFU, #020/21).

View Article and Find Full Text PDF

Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.

View Article and Find Full Text PDF

Disturbance in sleep and activity rhythms are significant health risks associated with alcohol use during adolescence. Many investigators support the theory of a reciprocal relationship between disrupted circadian rhythms, sleep patterns, and alcohol usage. However, in human studies it is difficult to disentangle other factors (i.

View Article and Find Full Text PDF

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

Synergistic enhancement in ultra-trace thallium(I) removal using the titanium dioxide/biochar composite.

J Environ Manage

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:

Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!