Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Preparation of novel salicylate-selective optical sensors (bulk optodes) was performed and applied successfully for salicylate determination in pharmaceutical formulations, Aspirin® and Aspocid®. t-butyl calix[4]arene ionophore was incorporated in a plasticized poly (vinyl-chloride) membrane containing the chromoionophore ETH5294 (O) or ETH7075 (O). The optical response to salicylate was due to size-selective extraction of salicylate from the aqueous solution to the optode bulk through formation of hydrogen bond accompanied by chromoionophore protonation, that resulted in the optical response at 680 or 540 nm for O or O, respectively. Reliable size-selectivity was measured for salicylate over other anions; The calculated selectivity coefficients of O optode were found to be: -4.4, -2.0 and - 3.7 for iodide, benzoate and perchlorate, respectively. The hydrogen bonding mechanism and selectivity pattern were ensured and explained by IR and H NMR spectroscopy. For the same purpose, a molecular recognition constant of β=10 was calculated using sandwich membrane method, and its small value ensured that hydrogen bonding interaction is responsible for the optode response. The detection limits of O and O in salicylate buffered solutions were 9.0 × 10 and 8.9 × 10 M with response times of 5 and 3 min, respectively, and with very good reversibility. The practical utility of the developed sensors was ensured by salicylate determination in Aspirin® and Aspocid®. Beyond the observed analytical performance, the present work aims not only to effectively apply Calixarene without derivatization, but also to estimate the strength of the size-dependent hydrogen bonding and comprehensively study the interaction mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2018.04.057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!