A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and development of microemulsion systems of a new antineoplaston A10 analog for enhanced intravenous antitumor activity: In vitro characterization, molecular docking, I-radiolabeling and in vivo biodistribution studies. | LitMetric

A10, (3-phenylacetylamino-2,6-piperidinedione), is a natural peptide with broad antineoplastic activity. Recently, in vitro antitumor effect of a new A10 analog [3-(4-methoxybenzoylamino)-2,6-piperidinedione] (MPD) has been verified. However, poor aqueous solubility represents an obstacle towards intravenous formulation of MPD and impedes successful in vivo antitumor activity. To surmount such limitation, MPD microemulsion (MPDME) was developed. A 32 full factorial design using Design-Expert® software was adopted to study the influence of different parameters and select the optimum formulation (MPDME1). Transmission electron microscopy (TEM) displayed spherical droplets of MPDME1. The cytotoxicity of MPDME1 in Michigan Cancer Foundation 7 (MCF-7) breast cancer cell line exceeded that of MPD solution (MPDS) and tamoxifen. Compatibility with injectable diluents, in vitro hemolytic studies and in vivo histopathological examination confirmed the safety of parenteral application of MPDME1. Molecular docking results showed almost same binding affinity of A10, MPD and I-MPD with histone deacetylase 8 (HDAC8) receptor. Accordingly, radioiodination of MPDME1 and MPDS was done via direct electrophilic substitution reaction. Biodistribution of I-MPDME1 and I-MPDS in normal and tumor (ascites and solid) bearing mice showed high accumulation of I-MPDME1 in tumor tissues. Overall, the results proved that MPDME represents promising parenteral delivery system capable of improving antineoplastic activity of MPD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.05.010DOI Listing

Publication Analysis

Top Keywords

a10 analog
8
antitumor activity
8
activity vitro
8
molecular docking
8
antineoplastic activity
8
mpd
6
mpdme1
5
design development
4
development microemulsion
4
microemulsion systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!