Background & Aims: MAF bZIP transcription factor G (MAFG) is activated by the farnesoid X receptor to repress bile acid synthesis. However, expression of MAFG increases during cholestatic liver injury in mice and in cholangiocarcinomas. MAFG interacts directly with methionine adenosyltransferase α1 (MATα1) and other transcription factors at the E-box element to repress transcription. We studied mechanisms of MAFG up-regulation in cholestatic tissues and the pathways by which S-adenosylmethionine (SAMe) and ursodeoxycholic acid (UDCA) prevent the increase in MAFG expression. We also investigated whether obeticholic acid (OCA), an farnesoid X receptor agonist, affects MAFG expression and how it contributes to tumor growth in mice.

Methods: We obtained 7 human cholangiocarcinoma specimens and adjacent non-tumor tissues from patients that underwent surgical resection in California and 113 hepatocellular carcinoma (HCC) specimens and adjacent non-tumor tissues from China, along with clinical data from patients. Tissues were analyzed by immunohistochemistry. MAT1A, MAT2A, c-MYC, and MAFG were overexpressed or knocked down with small interfering RNAs in MzChA-1, KMCH, Hep3B, and HepG2 cells; some cells were incubated with lithocholic acid (LCA, which causes the same changes in gene expression observed during chronic cholestatic liver injury in mice), SAMe, UDCA (100 μM), or farnesoid X receptor agonists. MAFG expression and promoter activity were measured using real-time polymerase chain reaction, immunoblot, and transient transfection. We performed electrophoretic mobility shift, and chromatin immunoprecipitation assays to study proteins that occupy promoter regions. We studied mice with bile-duct ligation, orthotopic cholangiocarcinomas, cholestasis-induced cholangiocarcinoma, diethylnitrosamine-induced liver tumors, and xenograft tumors.

Results: LCA activated expression of MAFG in HepG2 and MzChA-1 cells, which required the activator protein-1, nuclear factor-κB, and E-box sites in the MAFG promoter. LCA reduced expression of MAT1A but increased expression of MAT2A in cells. Overexpression of MAT2A increased activity of the MAFG promoter, whereas knockdown of MAT2A reduced it. MAT1A and MAT2A had opposite effects on the activator protein-1, nuclear factor-κB, and E-box-mediated promoter activity. Expression of MAFG and MAT2A increased, and expression of MAT1A decreased, in diethylnitrosamine-induced liver tumors in mice. SAMe and UDCA had shared and distinct mechanisms of preventing LCA-mediated increased expression of MAFG. OCA increased expression of MAFG, MAT2A, and c-MYC, but reduced expression of MAT1A. Incubation of human liver and biliary cancer cells lines with OCA promoted their proliferation; in nude mice given OCA, xenograft tumors were larger than in mice given vehicle. Levels of MAFG were increased in human HCC and cholangiocarcinoma tissues compared with non-tumor tissues. High levels of MAFG in HCC samples correlated with hepatitis B, vascular invasion, and shorter survival times of patients.

Conclusions: Expression of MAFG increases in cells and tissues with cholestasis, as well as in human cholangiocarcinoma and HCC specimens; high expression levels correlate with tumor progression and reduced survival time. SAMe and UDCA reduce expression of MAFG in response to cholestasis, by shared and distinct mechanisms. OCA induces MAFG expression, cancer cell proliferation, and growth of xenograft tumors in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6067975PMC
http://dx.doi.org/10.1053/j.gastro.2018.04.032DOI Listing

Publication Analysis

Top Keywords

expression mafg
28
mafg
19
expression
17
mafg expression
16
increased expression
16
cholestatic liver
12
liver injury
12
farnesoid receptor
12
non-tumor tissues
12
expression mat1a
12

Similar Publications

Background: Prostate cancer (PCa) ranks as the second leading cause of cancer-related mortality among men. Long non-coding RNAs (lncRNAs) are known to play a regulatory role in the development of various human cancers. LncRNA MAFG-divergent transcript (MAFG-DT) was reported to play a crucial role in tumor progression of multiple human cancers, such as pancreatic cancer, colorectal cancer, bladder cancer, and gastric cancer.

View Article and Find Full Text PDF

A redox-related lncRNA signature in bladder cancer.

Sci Rep

November 2024

Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China.

The redox status is intricately linked to the development and progression of cancer, a process that can be modulated by long non-coding RNAs (lncRNAs). Previous studies have demonstrated that redox regulation can be considered a potential therapeutic approach for cancer. However, the redox-related lncRNA predictive signature specific to bladder cancer (BCa) has yet to be fully elucidated.

View Article and Find Full Text PDF

The Role of Long Non-Coding RNAs in Ovarian Cancer Cells.

Int J Mol Sci

September 2024

Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.

Among the most deadly malignancies that strike women worldwide, ovarian cancer is still one of the most common. The primary factor affecting a patient's survival is early lesion discovery. Unfortunately, because ovarian cancer is a sneaky illness that usually manifests as nonspecific symptoms only in advanced stages, its early detection and screening are challenging.

View Article and Find Full Text PDF

Heat stress (HS) poses a great challenge to the poultry industry by inducing oxidative damage to the liver, endangering the health and production of broilers. As an important type of seaweed polyphenols, phlorotannin has been shown to have antioxidant properties. The present study evaluated the protective effects of dietary phlorotannin on HS-induced liver injury in broilers based on oxidative damage parameters.

View Article and Find Full Text PDF

Transcription factor deregulation potently drives melanoma progression by dynamically and reversibly controlling gene expression programs. We previously identified the small MAF family transcription factor MAFG as a putative driver of melanoma progression, prompting an in-depth evaluation of its role in melanoma. MAFG expression increases with human melanoma stages and ectopic MAFG expression enhances the malignant behavior of human melanoma cells in vitro, xenograft models, and genetic mouse models of spontaneous melanoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!