Astrocytes are the most abundant cells in the brain. They support neurons, adjust synaptic strength, and modulate neuronal signaling, yet the full extent of their functions is obscured by the dearth of methods for their visualization and analysis. Here, we report a chemical reporter that targets small molecules specifically to astrocytes both in vitro and in vivo. Fluorescent versions of this tag are imported through an organic cation transporter to label glia across species. The structural modularity of this approach will enable wide-ranging applications for understanding astrocyte biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287642PMC
http://dx.doi.org/10.1021/acschembio.8b00391DOI Listing

Publication Analysis

Top Keywords

visualizing brain's
4
brain's astrocytes
4
astrocytes diverse
4
diverse chemical
4
chemical scaffolds
4
scaffolds astrocytes
4
astrocytes abundant
4
abundant cells
4
cells brain
4
brain support
4

Similar Publications

Tachistoscopic studies have established a right field advantage for the perception of visually presented words, which has been interpreted as reflecting a left hemispheric specialization. However, it is not clear whether this is driven by the linguistic task of word processing, or also occurs when processing properties such as the style and regularity of text. We had 23 subjects perform a tachistoscopic study while they viewed five-letter words in either computer font or handwriting.

View Article and Find Full Text PDF

Optogenetic therapy is a promising vision restoration method where light sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like pre-clinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent.

View Article and Find Full Text PDF

Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.

Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.

View Article and Find Full Text PDF

We introduce a sentence corpus with eye-movement data in traditional Chinese (TC), based on the original Beijing Sentence Corpus (BSC) in simplified Chinese (SC). The most noticeable difference between TC and SC character sets is their visual complexity. There are reaction time corpora in isolated TC character/word lexical decision and naming tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!